
Why AM and Eurisko Appear to Work

Douglas B. Lenat
Heuristic Programming Project

Stanford University
Stanford, Ca.

ABSTRACT

Seven years ago, the AM program was constructed as
an experiment in learning by discovery. Its source of
power was a large body of heuristics, rules which guided
it toward fruitful topics of investigation, toward
profitable experiments to perform, toward plausible
hypotheses and definitions. Other heuristics evaluated
those discoveries for utility and “ interestingness” , and
they were added to AM’s vocabulary of concepts. AM’s
ultimate limitation apparently was due to its Inability to
discover new, powerful, domain-specific heuristics for the
various new fields it uncovered. At that time, it seemed
straight-forward to simply add Heuretics (the study of
heuristics) as one more field in which to let AM explore,
observe, define, and develop. That task -- learning new
heuristics by discovery -- turned out to be much more
difficult than was realized initially, and we have just now
achieved some successes at it. Along the way, it became
clearer why AM had succeeded in the first place, and
why it was so difficult to use the same paradigm to
discover new heuristics. This paper discusses those
recent insights. They spawn questions about “where the
meaning really resides” in the concepts discovered by

A?/I. This leads to an appreciation of the crucial and
unique role of representation in theory fomlation, a role
intolling the relationship bet\% een Form and Content.

What AlI Really Did

In essence, AM was an automatic programming
system, whose primitive actions produced modifications
to pieces of Lisp code, predicates which represented the
characteristic functions of various math concepts. For
instance, AM had a frame that represented the concept
LIST-EQUAL, a predicate that checked any two Lisp list
structures to see whether or not they were equal (printed
out the same way). That frame had several slots: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

NAME: LIST-EOUAL

IS-A: (

GEN'L:

SPEC: I
FAST-AI-G: (

RECUR-ALG: (

PREDItATE FUNCTION OP BINARY-PREDICATE

BINARY-FUNCTION BINARY-OP ANYTHING)

SET-EQUAL BAG-EQUAL OSET-EQUAL STRUC-EQUAL)

LIST-OF-EQ-ENTRIES LIST-OF-ATOMS-EQUAL

LAMBDA (x y) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(EQUAL x y))

EQ)

LAMBDA (x y)

(COND If"" ,6",',"" xl (ATOM Y)) (EQ x Y))

. \
(LIST-EQUAL (CAR x) (CAR y))

DOMAIN:

fk:S~-VLA:SJE

(LIST-EQUAL (CDR x) (CDR y))))))

RANGE:

WORTH: 720

John Seely Brown
Cognitive and Instructional Sciences

Xerox PARC
Palo Alto, Ca.

Of central importance is the RECUR-ALG slot,
which contains a recursive algorithm for computing
LIST-EQUAL of two input lists x and y. That algorithm
recurs along both the CAR and CDR directions of the
list structure, until it finds the leaves (the atoms), at
M’hich point it checks that each leaf in N is identicallq
equal to the corresponding node in 1. If an\ recursive
call on LIST-EQUAL signals KIL, the entiie result is
KlL, otherwise the result is T. During one NM task, it
sought for examplss of LIST-EQUAL in action, and a
heuristic accomodated by pickin random pairs of
examples of LIST, plugging them m for x and y, and
running the algorithm. Needless to say, very’ few of those
executions returned T (about 2%, as there i\ere about 50
examples of LIST at the time). Another heuristic noted
that this was extremely IOM (though nonzero), so it might
be worth defining new predicates by slightly- generalizing
LIST-EQUAL; that is, copy its algorithm and weaken it
so that it returns T more often. When that task was
chosen from the agenda, another heuristic said that one
way to generalize a definition with two conjoined
recursive calls was simply to eliminate one of them
entirely, or to replace the AND by an OR. In one run
(in June. 1976) AM then defined these three new
predicates: ’

L-E-1: (LAMBDA (x y)

(COND ItOR (ATOM x) (ATOM y)) (EQ x Y))
(L-E-l (CDR x) (CDR y))]

L-E-3: (LAMBDA (x y)

(COND [{OR ((OARTOM x) (ATOM Y)) (EQ x Y))

(L-E-3 (CAR x (CAR y

(L-E-3 (CDR x (CDR y 1]

The first of these, L-E-1, has had the recursion in the
CAR direction removed. All it checks for now is that,
when elements are stripped off each list. the tKo lists
become null at exactI\ the same time. That is, L-E-l is
noM the predicate be might call Same-Length.

The second of these, L-E-2, has had the CDR
recursion removed. When run on tM.0 lists of atoms, it
checks that the first elements of each list are equal.
When run on arbitrary lists, it checks that they have the
same number of leading left parentheses, and then that
the atom that then appears in each is the same.

The third of these is more difficult to characterize in
words. It is of course tnore general than both L-E-l and
L-E-2; if x and y are equal in length then L-E-3 would

236

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

return T, as it would if they had the same first element,
etc. This disjunction propogates to all levels of the list
structure. so that L-E-3 would return true for
x = (A (B C D) E F) and y = (Q (B)) or even y = (Q
(W X Y)). Perhaps this predicate is most concisely
described by its Lisp definition.

A few points are important to make from this
example. First, note that AM does not make changes at
random, it is driven by empirical findings (such as the
rarity of LIST-EQUAL returning T) to suggest specific
directions in which to change particular concepts (such as
deciding to generalize LIST-EQUAL). However, once
haking reached this eminently reasonable goal, it then
reverts to a more or less syntactic mutation process to
achieve it. (Ch g an ing AND to OR, eliminating a
conjunct from an AKD, etc.) See [Green zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al., 741 for
background on this style of code synthesis and
modification.

Second, note that all three derived predicates are at
least a priori plausible and interesting and valuable.
The! are not trivial (such as al\ia>s returning T, or
al\i,ays returning !j hat LIST-EQUAL returns), and et en
the strangest of them (L-E-3) is genuinely worth
exploring for a minute.

Third, note that one of the three (L-E-2) is familiar
and useful (stime leading element), and another one (L-
E-l) is familiar and of the utmost significance (same
length). AM quickly derived from L-E-l a function we
would call LESGTH and a set of canonical lists of each
possible length ((), (T), (T T), (T T T), (T T T T), etc.:
i.e., a set isomorphic to the natural numbers). By
restricting list operations (such as APPEND) to these
canonical l+ts, AM derived the common arithmetic
functions (in this case, addition), and soon began
exploring elementary number theory. So these simple
mutations sometimes led to dramatic discoveries.

This simple-minded scheme worked almost
embarassingly well. Why was that? Originally, we
attributed it to the power of heuristic search (in defining
specific goals such as “generalize LIST-EQUAL”) and to
the density of worthwhile math concepts. Recently, we
have come to see that it is, in part, the density of
worthwhile math concepts as represented in Lisp that is
the crucial factor.

The Significance of AN’s Representation of Math
Concepts

It was only because of the intimate relationship
between Lisp and Vlathematics that the mutation
operators (loop unwinding, recursion elimination,
composition, argument elimination. function substitution,
etc.) turned out to j ield a high “hit rate” of \,iable, useful
new math concepts when applied to prei iousl!--known,
useful math concepts-- concepts represented as Lisp
functions. But no such deep relationship existed between
Lisp and Heuretics. and 15 hen the basic automatic
programming (mutations) operators N ere applied to
viable, useful heuristics, they almost alwal s produced
useless (often worse than useless) new heuristic rules.

To rephrase that: a math concept C was represented
in AM by its characteristic function, which in turn was
represented as a piece of Lisp code stored on the

Algorithms slot of the frame labelled “C” . This would
typically take about 4-S lines to write down, of which
only 1-3 lines were the “meat” of the function. Syntactic
mutation of such tiny Lisp programs led to meaningful,
related Lisp programs, which in turn lvere often the
characteristic function for some meaningful, related math
concept. But taking a two-page program (as many of the
AV heuristics were coded) and makmg a small syntactic
mutation is doomed to almost alwa!Vs giving garbage as
the result. It’s akin to causing a point mutation in an
organism’s DKA (by bombardins it with radiation, say):
in the case of a very simple mlcroorganism, there is a
reasonable chance of producing a triable, altered mutant.
In the case of a higher animal, however, such point
mutations are almost universally deleterious.

We pay careful attention to making our
representations fine-grained enough to capture all the
nuances of the concepts they stand for (at least, all the
properties we can think of), but we rarely worry about
making those representations too flexible, too fme-
grained. But that is a real problem: such a “too-fine-
grained” representation creates syntactic distinctions that
don’t reflect semantic distinctions -- distinctions that are
meaningful in the domain. For instance, in cpdin$ a
piece of knov,ledge for MYCIN, in u7hich an lteratlon
was to be performed, it was once necessary to use several
rules to achieve the desired effect. The ph),sicians (both
the experts and the end-users) could not make head or
tail of such rules indi\iduallj-, since the doctors didn’t
break their knowledge down below the level at which
iteration was a primitive. As another example, in
representing a VLSI design heuristic H as a two-page
Lisp program, enormous structure and detail were
added -- details that are meaningless as far as capturing
its meaning as a piece of VLSI knowledge (e.g., lots of
named local variables being bound and updated; many
operations which were conceptually an indivisible
primitive part of H were coded as several lines of Lisp
which contained dozens of distinguishable (and hence
mutable) function calls: etc.) Those details were
meaningful (and necessary) to H’s implementation on a
particular architecture. Of course, ne can never directly
mutate the meaning of a concept, we can only mutate the
structural for-t?? of that concept as embedded in some
representation scheme. Thus, there is never any
guarantee that we aren’t just mutating some
“ implementation detail” that is a consequence of the
representation, rather than some genuine part of the
concept’s intensionality.

But there are even more serious representations
issues. In terms of the syntax of a given language, it is
straightforward to define a collection of mutators that
produce minimal generalizations of a given Lisp function
by systematic modifications to its implementation
structure (e.g., removing a conjunct, replacing AXD by
OR, finding a NOT and specializing its argument, etc.)
Structural generalizations produced in this \\ay can be
guaranteed to generalize the extension of function, and
that necessarih. produces a generalization of its intension,
its meaning. -i‘herein lies the lure of the AM and Eurisko
paradigm. \Ve noif understand that that lure conceals a
dangerous barb: minimal generalizations defined over a
function’s structural encoding need not bear much
relationship to minimal intensional generalizations,
especially if these functions are computational objects as
opposed to mathematical entities.

237

Better Representations

Since 1976, one of us has attempted to get
EURISKO (the descendant of AM; see [Lenat 82,83a,b])
to learn new heuristics the same way it learns new math
concepts. For five years, that effort achieved mediocre
results. Gradually, the way we represented heuristics
changed, from two opaque lumps of Lisp code (a one-
page long IF part and a one-page long THEN part) into
a new language in which the statement of heuristics is
more natural: it appears more spread out (dozens of slots
replacing the IF and THEN), but the length of the values
in each IF and THEN is quite small, and the total size of
all those values put together is still much smaller (often
an order of magnitude) than the original two-page lumps
were.

It is not merely the shortening of the code that is
important here, but rather the fact that this new
vocabulary of slots provides a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfunctional decomposition of
the original two-page program. A single mutation in the
n& representation now “macro expands” into many
coordinnted small mutations at the Lisp code level:
conversely. most \:leaningless small changes at the Lisp
level can’t e\‘en be expressed in terms of changes to the
higher-order language. This is akin to the uay biological
evolution makes use of the gejle as a meaningful
functional unit, and gets great milage from rearranging
and copy-and-edit’ing it.

A heuristic in EURISKO is now -- like a math
concept always was in AM -- a collection of about twenty
or more slots, each filled with a line or two worth of code
(or often just an atom or two). By employing this new
language, the old property that A-M satisfied fortuitously
is once again satisfied: the primitive syntactic mutation
operators usually now produce meaningful semantic
variants of what they operate on. Partly by design and
partly by evolution, a language has been constructed in
which heuristics are represented naturally, just as Church
and McCarthy made the lambda calculus and Lisp a
language in which math characteristic functions could be
represented naturally. Just as the Lisp<-->Math “match”
helped AM to work, to discover math concepts, the new
“match” helps Eurisko to discover heuristics.

In getting Eurisko to work in domains other than
mathematics, we have also been forced to develop a rich
set of slots for each domain (so that any one value for a
slot of a concept will be small) and provide a frame that
contains information about that slot (so it can be used
meaningfully by the program). This combination of
small size, meaningful functional decomposition, plus
explicitly stored information about each type of slot,
enables the AM-Eurisko scheme to function adequately.
It has already done so for domains such as the design of
three dimensional VLSI chips, the desi.gn of fleets for a
futuristic nai al wargame, and for lnterhsp programming.

We believe that such a natural representation should
be sought b> anypne building an expert system for
domain X: if M,hat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIS bei?g built is intended to form new
theories about X, then it IS a necessity, not a luxury. That
is, it is necessary to find a way of representing X’s
concepts as a structure whose pieces are each relatively
small and unstructured. In many cases, an existing
representation will suffice, but if the “ leaves” are large,
simple methods will not suffice to transform and
combine them into new, meaningful “ leaves” . This is the

primary retrospective lesson ue ha\.e gleaned from our
study of AM. We have applied it to getting Eurisko to
discover heuristics. and are beginning to get Eurisko to
discover such new languages, to automatically modify its
vocabulary of slots. To date. there are three cases in
which Eurisko has successfully and fruitfully split a slot
into more specialized subslots. One of those cases was in
the domain of designing three dimensional VLSI circuits,
where the Terminals slot was automatically split into
InputTerminals, OutputTerminals, and SetsOfWhich-
ExactlyOneElementMustBeAnOutputTerminal.

The central argument here is the following:
(1) “Theories” deal with the meaning, the content of a
body of concepts, whereas “theory formation” is of
necessity limited to working on form, on the structures
that represent those concepts in some scheme.
(2) This makes the mapping between form and content
quite important to the success of a theory formation
effort (be it by humans or machines).
(3) Thus it’s important to find a representation in which
the form<-->content mapping is as natural (i.e., efficient)
as possible, a representation that mimics (analogicall\)
the conceptual underpinnings of the task domain b&g
theorized about. This is akin to Brian Smith’s
recognition of the desire to achisle a categorical
alignment betljeen the syntax and semantics of a
computational language.
(4) Exploring “theorb formation” therefore frames -- and
forces us to study -- the mapping between form and
content.
(5) This is especially true for those of us in AI who wish
to build theory formation programs, because that
mapping is vital to the ultimate successful performance
of our programs.

Where does the meaning reside?

We speak of our progr‘ams knowing something, e.g.
ANs knowing about the List-Equal concept. But in what
sense does A-V know it? Although this question may
seem a bit adolescent, we believe that in the realm of
theory formation (and learning s!,srems), answers to this
question are crucial, for otherwise what does it mean to
say that the system has “discovered” a new concept? In
fact, many of the controversies over A;M stem from
confusions about this one issue -- admittedly, confusions
in our own understanding of this issue as well as others’.

and
In AM and Eurisko, a concept C is simuly;eously

somewhat redundantly represented two
fundamentally different ways. The first way is via its
characteristic function (as stored on the Algorithms and
Domain/Range slots of the frame for C). This provides a
meani?g relative to the WOJ it is interpreted, but since
there 1s a single unchanging EVAL, this provides a
unique interpretation of C. The second way a concept is
specified is more declaratilel!.. \ ia slots that contain
corzstraiuts on the meaning: Generalizations, Examples,
ISA. For instance, if b’e specify that D is a
Generalization of C (i.e., D is an entr1 on C’s
Generalizations slot). then by the semantics of
“Generalizations” all entries on C’s Examples slot oucht
to cause D’s Algorithm to return T. Such constrai&
squeeze the set of possible meanings of C but rarely to a
single point. That is. multiple interpretations based just
on these underdetermined constraints are still possible.
Sotice that each scheme has its ow’n unique advantage.
The characteristic function provides a complete and

238

succinct characterization that can both be executed
efficiently and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoperated 011. The descriptive information
about the concept, although not providing a
“characterization” instead provides the grist to guide
control of the mutators, as well as jogging the
imagination of human users of the program by forcing
them to do the disambiguation themselves! Both of these
uses capitalize on the ambiguities. We will return to this
point in a moment but first let us consider how meaning
resides in the characteristic function of a concept.

It is beyond the scope of this paper to detail how
meaning per se resides in a procedural encoding of a
characteristic function. But two comments are in order.
First, it is obvious that the meaning of a characteristic
function is always relative to the interpreter (theory) for
the given language in which the function is. In this case,
the interpreter can be succintly7 specified by the EVAL of
the given Lisp system.

But the meaning also resides, in part, in the
“meaning” of the data structures (i.e. what they are
meant to denote in the “world”) that act as arguments to

that algorithm. For example. the math concept List-
Equal takes as its arguments two lists. That concept is
represented by a LISP predicate, n,hich takes as rts two
arguments two structures that both are lists and (trivially)
represent lists. That predicate (the LAhlBDA expression
niven earlier for List-Equal) assumes that its arguments
till never need “dots” to represent them (i.e., that at all
levels the CDR of any subexpression is either NIL or
nonatomic), it assumes that there is no circular list
structure in the arguments, etc. This representation, too,
proved well-suited for leading quickly to a definition of
natural numbers (just by doing a substitution of T for
an\.thing in a Lisp list), and that unary representation was
critical to AM’s discovering arithmetic and elementary
number theory. If somehow a place-value scheme for
representing numbers had developed, then the simple
route AM followed to discover arithmetic (simply
applying Set-theoretic functions to “numbers” and seeing
what happened) would not have worked at all. It’s fine
to ask what happens when you apply BagUnion to three
and two, so long as they’re represented as (T T T) and (T
Tj: the result is (T T T T T). i.e. the number five in our
unary representation. Try applying BagUnion to 3 and >
(or to any two Lisp atoms) and you’d get NIL, which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIS

no help at all. Using bags of T’s for numbers is ta
into the same source of power as Gelernter 11963 P

ping
did;

namely, the power of having an analogic representation,
one in which there is a closeness between the data
structures employed and the abstract concept it
represents -- again, an issue of the relationship between
form and function.

Thus, to some extent, even when discussing the
meaning of a concept as portrayed in its characteristic
function, there is some aspect of that meaning that we
must attribute to it. namely that aspect that has to do
with how w’e wish to interpret the data structures it
operates on. That is, although the system in principle
contains a complete characterizatton of what the
operators of the language mean (the system has
embedded within itself a representation of EVAL -- a
representation that is, in principle, modifiable by the
system itself) the system nevertheless contains no theory
as to what the data structures denote. Rather, ,ve (the
human observers) attribute meaning to those structures.

AM (and any AI program) is merely a model, and by
watching it we place a particular interpretation on that
model, though many alternatives may exist. The
representation of a concept by a Lisp encoding of its
characteristic function may very well admit only one
interpretation (given a fixed EVAL, a fixed set of data
structures for arguments, etc.) But most human
observers looked not at that function but rather at the
underconstrained declarative information stored on slots
with names like Domain/Range, HowCreated,
Generalizations, ISA, Examples, and so on. We find it
provocative that the most useful heuristics in Eurisko --
the ones which provide the best control guidance -- have
triggering conditions which are also based only on these
same underconstraining slots.

Going over the history of AM, we realize that in a
more fundamental way we -- the human observers -- play
another crucial role in attributing “meaning” to a
discovery in AM. How is that? As is clear from the fact
that Eurisko has often sparked insights and discoveries,
the clearest sense of meaning may be said to reside in the
way its output jogs our (or other observers’) memory, the
way it forces us to attribute some meaning to what it
claims is a disco\,eryv. Two examples, drawn from
Donald Knuth’s experiences in looking o\er traces of
AIM’s behavior, will illustrate the two kinds of “filling in”
that is done b! human beings:

(i) See AM s definition of highly composite numbers,
plus its claim that they. are interesting, and (for a very
different reason than the program) notice that they
are interesting;
(ii) See a definition of partitioning sets (an operation
that was never judged to be interesting by AM after it
defined and studied it), recognize that it is the
definition of a familiar, worthwhile concept, and
credit the program with rediscovering it.

While most of A-M’s discoveries were judged
interesting or not interesting in accord with human
judgements, and for similar reasons, errors of these two
types did occur occasionally, and indeed errors of the
first type have proven to be a major source of synergy in
using Eurisko. To put this cynicall!. the more a working
scientist bears his control knoivlsdge (audit trail) to his
colleagues and students, the more accurately they can
interpret the meaning of his statements and discoveries,
but the less like/j, they w?ll be to come up (via being
forced to work to find an interpretation) with different,
and perhaps more interesting, interpretations.

Conclusion

We halve taken a retrospective look at the kind of
activity AaM carried out. Although we generally
described it as “exploring in the space of math concepts” ,
what it actually was doing from moment to moment was
“syntactically mutating small Lisp programs” . Rather
than disdaining it for that reason, we saw that that was its
salvation, its chief source of pow’er, the reason it had such
a high hit rate: AM was exploiting the natural tie
between Lisp and mathematics.

We ha\,e seen the dependence of AM’s performance
upon its representation of math concepts’ characterisitic
functions in Lisp, and in turn their dependence upon the
Lisp representation of their arguments, and in both cases
their dependence upon the semantics of Lisp, and in all

239

those &es the depkndence upon the obser\ler’s frame of
reference. The largely fortuitous “ impedance match”
between all four of these, in AM, enabled it to proceed
with great speed for a while, until it moved into a less
well balanced state.

One of the most crucial requirements for a learning
system, especially one that is to learn by discoverv, is that
of an adequate representation. The paradigm for
machine learning to date has been limited to learning
new expressions in some more or less well defined
language (even though, as in AM’s case, the vocabulary
may increase over time, and, as in Eurisko’s case, even
the grammar might expand occasionally).

well
If the language or representation employed is not

matched to the domain objects and operators, the
heuristics that do exist will be long and awkwardly stated,
and the discovery of new ones in that representation may
be nearly impossible. As an example, consider that
Eurisko began with a small vocabulary of slots for
describing heuristics (If, Then), and over the last several
years it has been necessary (in order to obtain reasonable
performance) to evolve two orders of magnitude more
kinds of slots that heuristics could have, many of them
domain-dependent, many. of them proposed by Eurisko
itself. Another example 1s simply the amount of effort
we must expend to add a new domain to Eurisko’s
repertoire, much of that effort involving choosing and
adjusting a set of new domain-specific slots.

The chief bottleneck in building large AI programs,
such as expert systems, is recognized as being knowled e
acquisition. There are two major problems to tackle: $ i)
building tools to facilitate the man-machine interface,
and (ii) finding ways to dynamically devise an
appropriate representation. Much work has focused on
the former of these, but our experience with AM and
Eurisko indicates that the latter is just as serious a
contributor to the bottleneck, especially in building
theory formation systems. Thus, our current research is
to get Eurisko to automatically extend its vocabulary of
slots, to maintain the naturalness of its representation as
new (sub)domains are uncovered and explored. This
paper has raised the aiarm; another longer one [Lenat
83b] discusses the approach we’re following and progress
to date.

Acknowledgements

EURISKO is written in -- and relies upon -- RLL
[Lenat&Greiner 801 and Interlisp-D. We wish to thank
XEROX PARC’s CIS and Stanford Unii.ersity’s HPP for
providing superb environments (intellectual, physical,
and computational) in which to work. Financial support
is provided by ONR, ARPA, and XEROX. We thank
Saul Amarel and Danny Bobrow for useful comments on
this work.

References

DeKleer, J., and J. S. Brown “Foundations of
Envisioning” , Proc. AAAI-82, NCAI, Carnegie-Mellon
U., Pittsburgh, Pa., 1982.

Feigenbaum, Edward A., “The Art of Artificial
Intellig.ence” , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProc. Fijih IJCAI, August, 1977, MIT,
Cambndge, Mass., p. 1014.

Glerenter, H., “Realization of Geometry Theorem
Proving Machine” , in (Feigenbaum and Feldman, eds.)
Computers and Thought, McGraw-Hill, N.Y., 1963, 134-
52.

Green, Cord&, Richard Waldinger, David Barstow,
Robert Elschlager, Douglas Lenat, Brian VcCune, David
Shaw, and Louis Steinberg, Progress Report on Program
Understanding SJlstems, AIM-240, STAN-CS-74-444, AI
Lab, Stanford, Ca., August, 1974.

Hayes-Roth, Frederick, Donald Waterman, and
Douglas Lenat (eds.), Building Expert Systems, Addison-
Wesley, 1983.

Lenat, Douglas B., “On Automated Scientific Theory
Formation: A Case Study Using the AM Program,” in
(Jean Hayes, Donald Michie, and L. I. Mikulich, eds.)
Machine Intelligence 9, I\;ew York: Halstead Press, a
division of John Wiley & Sons, 1979, pp. 251-283.

Lenat, Douglas B., and Russel D. Greiner, “RLL: A
Representation Language Language,” Proc. of the First
Annual IVCAI, Stanford, August, 1980.

Lenat, Douglas B., “The Nature of Heuristics” , J.
Artl$icial Intelligence, 19, 2, October, 1982.

Lenat, Douglas B., “The Nature of Heuristics II” , J.
Art$cial Intelligence 21, March, 1983a.

Lenat, Douglas B., “The Nature of Heuristics III” , J.
ArtiJicial Intelligence 21, March, 1983b.

Polya, G.,
Press, 1945.

How to Solve It, Princeton University

Smith, Brian, “Reflection and Semantics in a
Procedural LaFguage” , M.I.T. Laboratory for Computer
Science Technical Report TR-272, Cambridge, Ma., 1982

