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ABSTRACT 

Seven years ago, the AM program was constructed as 
an experiment in learning by discovery. Its source of 
power was a large body of heuristics, rules which guided 
it toward fruitful topics of investigation, toward 
profitable experiments to perform, toward plausible 
hypotheses and definitions. Other heuristics evaluated 
those discoveries for utility and “ interestingness” , and 
they were added to AM’s vocabulary of concepts. AM’s 
ultimate limitation apparently was due to its Inability to 
discover new, powerful, domain-specific heuristics for the 
various new fields it uncovered. At that time, it seemed 
straight-forward to simply add Heuretics (the study of 
heuristics) as one more field in which to let AM explore, 
observe, define, and develop. That task -- learning new 
heuristics by discovery -- turned out to be much more 
difficult than was realized initially, and we have just now 
achieved some successes at it. Along the way, it became 
clearer why AM had succeeded in the first place, and 
why it was so difficult to use the same paradigm to 
discover new heuristics. This paper discusses those 
recent insights. They spawn questions about “where the 
meaning really resides”  in the concepts discovered by 

A?/I. This leads to an appreciation of the crucial and 
unique role of representation in theory fomlation, a role 
intolling the relationship bet\% een Form and Content. 

What AlI Really Did 

In essence, AM was an automatic programming 
system, whose primitive actions produced modifications 
to pieces of Lisp code, predicates which represented the 
characteristic functions of various math concepts. For 
instance, AM had a frame that represented the concept 
LIST-EQUAL, a predicate that checked any two Lisp list 
structures to see whether or not they were equal (printed 
out the same way). That frame had several slots: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

NAME: LIST-EOUAL 

IS-A: ( 

GEN'L: 

SPEC: I 
FAST-AI-G: ( 

RECUR-ALG: ( 

PREDItATE FUNCTION OP BINARY-PREDICATE 

BINARY-FUNCTION BINARY-OP ANYTHING) 

SET-EQUAL BAG-EQUAL OSET-EQUAL STRUC-EQUAL) 

LIST-OF-EQ-ENTRIES LIST-OF-ATOMS-EQUAL 

LAMBDA (x y) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(EQUAL x y)) 

EQ) 

LAMBDA (x y) 

(COND If"" ,6",',"" xl (ATOM Y)) (EQ x Y)) 

. \ 
(LIST-EQUAL (CAR x) (CAR y)) 

DOMAIN: 

fk:S~-VLA:SJE 

(LIST-EQUAL (CDR x) (CDR y)))))) 

RANGE: 

WORTH: 720 
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Of central importance is the RECUR-ALG slot, 
which contains a recursive algorithm for computing 
LIST-EQUAL of two input lists x and y. That algorithm 
recurs along both the CAR and CDR directions of the 
list structure, until it finds the leaves (the atoms), at 
M’hich point it checks that each leaf in N is identicallq 
equal to the corresponding node in 1. If an\ recursive 
call on LIST-EQUAL signals KIL, the entiie result is 
KlL, otherwise the result is T. During one NM task, it 
sought for examplss of LIST-EQUAL in action, and a 
heuristic accomodated by pickin random pairs of 
examples of LIST, plugging them m for x and y, and 
running the algorithm. Needless to say, very’  few of those 
executions returned T (about 2%, as there i\ere about 50 
examples of LIST at the time). Another heuristic noted 
that this was extremely IOM (though nonzero), so it might 
be worth defining new predicates by slightly- generalizing 
LIST-EQUAL; that is, copy its algorithm and weaken it 
so that it returns T more often. When that task was 
chosen from the agenda, another heuristic said that one 
way to generalize a definition with two conjoined 
recursive calls was simply to eliminate one of them 
entirely, or to replace the AND by an OR. In one run 
(in June. 1976) AM then defined these three new 
predicates: ’  

L-E-1: (LAMBDA (x y) 

(COND ItOR (ATOM x) (ATOM y)) (EQ x Y)) 
(L-E-l (CDR x) (CDR y))] 

L-E-3: (LAMBDA (x y) 

(COND [{OR ((OARTOM x) (ATOM Y)) (EQ x Y)) 

(L-E-3 (CAR x (CAR y 

(L-E-3 (CDR x (CDR y 1 ] 

The first of these, L-E-1, has had the recursion in the 
CAR direction removed. All it checks for now is that, 
when elements are stripped off each list. the tKo lists 
become null at exactI\ the same time. That is, L-E-l is 
noM the predicate be might call Same-Length. 

The second of these, L-E-2, has had the CDR 
recursion removed. When run on tM.0 lists of atoms, it 
checks that the first elements of each list are equal. 
When run on arbitrary lists, it checks that they have the 
same number of leading left parentheses, and then that 
the atom that then appears in each is the same. 

The third of these is more difficult to characterize in 
words. It is of course tnore general than both L-E-l and 
L-E-2; if x and y are equal in length then L-E-3 would 
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return T, as it would if they had the same first element, 
etc. This disjunction propogates to all levels of the list 
structure. so that L-E-3 would return true for 
x = (A (B C D) E F) and y = (Q (B)) or even y = (Q 
(W X Y)). Perhaps this predicate is most concisely 
described by its Lisp definition. 

A few points are important to make from this 
example. First, note that AM does not make changes at 
random, it is driven by empirical findings (such as the 
rarity of LIST-EQUAL returning T) to suggest specific 
directions in which to change particular concepts (such as 
deciding to generalize LIST-EQUAL). However, once 
haking reached this eminently reasonable goal, it then 
reverts to a more or less syntactic mutation process to 
achieve it. (Ch g an ing AND to OR, eliminating a 
conjunct from an AKD, etc.) See [Green zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al., 741 for 
background on this style of code synthesis and 
modification. 

Second, note that all three derived predicates are at 
least a priori plausible and interesting and valuable. 
The! are not trivial (such as al\ia>s returning T, or 
al\i,ays returning !j hat LIST-EQUAL returns), and et en 
the strangest of them (L-E-3) is genuinely worth 
exploring for a minute. 

Third, note that one of the three (L-E-2) is familiar 
and useful (stime leading element), and another one (L- 
E-l) is familiar and of the utmost significance (same 
length). AM quickly derived from L-E-l a function we 
would call LESGTH and a set of canonical lists of each 
possible length ( ( ), (T), (T T), (T T T), (T T T T), etc.: 
i.e., a set isomorphic to the natural numbers). By 
restricting list operations (such as APPEND) to these 
canonical l+ts, AM derived the common arithmetic 
functions (in this case, addition), and soon began 
exploring elementary number theory. So these simple 
mutations sometimes led to dramatic discoveries. 

This simple-minded scheme worked almost 
embarassingly well. Why was that? Originally, we 
attributed it to the power of heuristic search (in defining 
specific goals such as “generalize LIST-EQUAL”) and to 
the density of worthwhile math concepts. Recently, we 
have come to see that it is, in part, the density of 
worthwhile math concepts as represented in Lisp that is 
the crucial factor. 

The Significance of AN’s Representation of Math 
Concepts 

It was only because of the intimate relationship 
between Lisp and Vlathematics that the mutation 
operators (loop unwinding, recursion elimination, 
composition, argument elimination. function substitution, 
etc.) turned out to j ield a high “hit rate”  of \,iable, useful 
new math concepts when applied to prei iousl!--known, 
useful math concepts-- concepts represented as Lisp 
functions. But no such deep relationship existed between 
Lisp and Heuretics. and 15 hen the basic automatic 
programming (mutations) operators N ere applied to 
viable, useful heuristics, they almost alwal s produced 
useless (often worse than useless) new heuristic rules. 

To rephrase that: a math concept C was represented 
in AM by its characteristic function, which in turn was 
represented as a piece of Lisp code stored on the 

Algorithms slot of the frame labelled “C” . This would 
typically take about 4-S lines to write down, of which 
only 1-3 lines were the “meat”  of the function. Syntactic 
mutation of such tiny Lisp programs led to meaningful, 
related Lisp programs, which in turn lvere often the 
characteristic function for some meaningful, related math 
concept. But taking a two-page program (as many of the 
AV heuristics were coded) and makmg a small syntactic 
mutation is doomed to almost alwa!Vs giving garbage as 
the result. It’s akin to causing a point mutation in an 
organism’s DKA (by bombardins it with radiation, say): 
in the case of a very simple mlcroorganism, there is a 
reasonable chance of producing a triable, altered mutant. 
In the case of a higher animal, however, such point 
mutations are almost universally deleterious. 

We pay careful attention to making our 
representations fine-grained enough to capture all the 
nuances of the concepts they stand for (at least, all the 
properties we can think of), but we rarely worry about 
making those representations too flexible, too fme- 
grained. But that is a real problem: such a “too-fine- 
grained”  representation creates syntactic distinctions that 
don’t reflect semantic distinctions -- distinctions that are 
meaningful in the domain. For instance, in cpdin$ a 
piece of knov,ledge for MYCIN, in u7hich an lteratlon 
was to be performed, it was once necessary to use several 
rules to achieve the desired effect. The ph),sicians (both 
the experts and the end-users) could not make head or 
tail of such rules indi\iduallj-, since the doctors didn’t 
break their knowledge down below the level at which 
iteration was a primitive. As another example, in 
representing a VLSI design heuristic H as a two-page 
Lisp program, enormous structure and detail were 
added -- details that are meaningless as far as capturing 
its meaning as a piece of VLSI knowledge (e.g., lots of 
named local variables being bound and updated; many 
operations which were conceptually an indivisible 
primitive part of H were coded as several lines of Lisp 
which contained dozens of distinguishable (and hence 
mutable) function calls: etc.) Those details were 
meaningful (and necessary) to H’s implementation on a 
particular architecture. Of course, ne can never directly 
mutate the meaning of a concept, we can only mutate the 
structural for-t?? of that concept as embedded in some 
representation scheme. Thus, there is never any 
guarantee that we aren’t just mutating some 
“ implementation detail”  that is a consequence of the 
representation, rather than some genuine part of the 
concept’s intensionality. 

But there are even more serious representations 
issues. In terms of the syntax of a given language, it is 
straightforward to define a collection of mutators that 
produce minimal generalizations of a given Lisp function 
by systematic modifications to its implementation 
structure (e.g., removing a conjunct, replacing AXD by 
OR, finding a NOT and specializing its argument, etc.) 
Structural generalizations produced in this \\ay can be 
guaranteed to generalize the extension of function, and 
that necessarih. produces a generalization of its intension, 
its meaning. -i‘herein lies the lure of the AM and Eurisko 
paradigm. \Ve noif understand that that lure conceals a 
dangerous barb: minimal generalizations defined over a 
function’s structural encoding need not bear much 
relationship to minimal intensional generalizations, 
especially if these functions are computational objects as 
opposed to mathematical entities. 
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Better Representations 

Since 1976, one of us has attempted to get 
EURISKO (the descendant of AM; see [Lenat 82,83a,b]) 
to learn new heuristics the same way it learns new math 
concepts. For five years, that effort achieved mediocre 
results. Gradually, the way we represented heuristics 
changed, from two opaque lumps of Lisp code (a one- 
page long IF part and a one-page long THEN part) into 
a new language in which the statement of heuristics is 
more natural: it appears more spread out (dozens of slots 
replacing the IF and THEN), but the length of the values 
in each IF and THEN is quite small, and the total size of 
all those values put together is still much smaller (often 
an order of magnitude) than the original two-page lumps 
were. 

It is not merely the shortening of the code that is 
important here, but rather the fact that this new 
vocabulary of slots provides a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfunctional decomposition of 
the original two-page program. A single mutation in the 
n& representation now “macro expands”  into many 
coordinnted small mutations at the Lisp code level: 
conversely. most \:leaningless small changes at the Lisp 
level can’t e\‘en be expressed in terms of changes to the 
higher-order language. This is akin to the uay biological 
evolution makes use of the gejle as a meaningful 
functional unit, and gets great milage from rearranging 
and copy-and-edit’ing it. 

A heuristic in EURISKO is now -- like a math 
concept always was in AM -- a collection of about twenty 
or more slots, each filled with a line or two worth of code 
(or often just an atom or two). By employing this new 
language, the old property that A-M satisfied fortuitously 
is once again satisfied: the primitive syntactic mutation 
operators usually now produce meaningful semantic 
variants of what they operate on. Partly by design and 
partly by evolution, a language has been constructed in 
which heuristics are represented naturally, just as Church 
and McCarthy made the lambda calculus and Lisp a 
language in which math characteristic functions could be 
represented naturally. Just as the Lisp<-->Math “match”  
helped AM to work, to discover math concepts, the new 
“match”  helps Eurisko to discover heuristics. 

In getting Eurisko to work in domains other than 
mathematics, we have also been forced to develop a rich 
set of slots for each domain (so that any one value for a 
slot of a concept will be small) and provide a frame that 
contains information about that slot (so it can be used 
meaningfully by the program). This combination of 
small size, meaningful functional decomposition, plus 
explicitly stored information about each type of slot, 
enables the AM-Eurisko scheme to function adequately. 
It has already done so for domains such as the design of 
three dimensional VLSI chips, the desi.gn of fleets for a 
futuristic nai al wargame, and for lnterhsp programming. 

We believe that such a natural representation should 
be sought b> anypne building an expert system for 
domain X: if M,hat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIS bei?g built is intended to form new 
theories about X, then it IS a necessity, not a luxury. That 
is, it is necessary to find a way of representing X’s 
concepts as a structure whose pieces are each relatively 
small and unstructured. In many cases, an existing 
representation will suffice, but if the “ leaves”  are large, 
simple methods will not suffice to transform and 
combine them into new, meaningful “ leaves” . This is the 

primary retrospective lesson ue ha\.e gleaned from our 
study of AM. We have applied it to getting Eurisko to 
discover heuristics. and are beginning to get Eurisko to 
discover such new languages, to automatically modify its 
vocabulary of slots. To date. there are three cases in 
which Eurisko has successfully and fruitfully split a slot 
into more specialized subslots. One of those cases was in 
the domain of designing three dimensional VLSI circuits, 
where the Terminals slot was automatically split into 
InputTerminals, OutputTerminals, and SetsOfWhich- 
ExactlyOneElementMustBeAnOutputTerminal. 

The central argument here is the following: 
(1) “Theories”  deal with the meaning, the content of a 
body of concepts, whereas “theory formation”  is of 
necessity limited to working on form, on the structures 
that represent those concepts in some scheme. 
(2) This makes the mapping between form and content 
quite important to the success of a theory formation 
effort (be it by humans or machines). 
(3) Thus it’s important to find a representation in which 
the form<-->content mapping is as natural (i.e., efficient) 
as possible, a representation that mimics (analogicall\) 
the conceptual underpinnings of the task domain b&g 
theorized about. This is akin to Brian Smith’s 
recognition of the desire to achisle a categorical 
alignment betljeen the syntax and semantics of a 
computational language. 
(4) Exploring “theorb formation”  therefore frames -- and 
forces us to study -- the mapping between form and 
content. 
(5) This is especially true for those of us in AI who wish 
to build theory formation programs, because that 
mapping is vital to the ultimate successful performance 
of our programs. 

Where does the meaning reside? 

We speak of our progr‘ams knowing something, e.g. 
ANs knowing about the List-Equal concept. But in what 
sense does A-V know it? Although this question may 
seem a bit adolescent, we believe that in the realm of 
theory formation (and learning s!,srems), answers to this 
question are crucial, for otherwise what does it mean to 
say that the system has “discovered”  a new concept? In 
fact, many of the controversies over A;M stem from 
confusions about this one issue -- admittedly, confusions 
in our own understanding of this issue as well as others’. 

and 
In AM and Eurisko, a concept C is simuly;eously 

somewhat redundantly represented two 
fundamentally different ways. The first way is via its 
characteristic function (as stored on the Algorithms and 
Domain/Range slots of the frame for C). This provides a 
meani?g relative to the WOJ it is interpreted, but since 
there 1s a single unchanging EVAL, this provides a 
unique interpretation of C. The second way a concept is 
specified is more declaratilel!.. \ ia slots that contain 
corzstraiuts on the meaning: Generalizations, Examples, 
ISA. For instance, if b’e specify that D is a 
Generalization of C (i.e., D is an entr1 on C’s 
Generalizations slot). then by the semantics of 
“Generalizations”  all entries on C’s Examples slot oucht 
to cause D’s Algorithm to return T. Such constrai& 
squeeze the set of possible meanings of C but rarely to a 
single point. That is. multiple interpretations based just 
on these underdetermined constraints are still possible. 
Sotice that each scheme has its ow’n unique advantage. 
The characteristic function provides a complete and 
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succinct characterization that can both be executed 
efficiently and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoperated 011. The descriptive information 
about the concept, although not providing a 
“characterization”  instead provides the grist to guide 
control of the mutators, as well as jogging the 
imagination of human users of the program by forcing 
them to do the disambiguation themselves! Both of these 
uses capitalize on the ambiguities. We will return to this 
point in a moment but first let us consider how meaning 
resides in the characteristic function of a concept. 

It is beyond the scope of this paper to detail how 
meaning per se resides in a procedural encoding of a 
characteristic function. But two comments are in order. 
First, it is obvious that the meaning of a characteristic 
function is always relative to the interpreter (theory) for 
the given language in which the function is. In this case, 
the interpreter can be succintly7 specified by the EVAL of 
the given Lisp system. 

But the meaning also resides, in part, in the 
“meaning”  of the data structures (i.e. what they are 
meant to denote in the “world”) that act as arguments to 

that algorithm. For example. the math concept List- 
Equal takes as its arguments two lists. That concept is 
represented by a LISP predicate, n,hich takes as rts two 
arguments two structures that both are lists and (trivially) 
represent lists. That predicate (the LAhlBDA expression 
niven earlier for List-Equal) assumes that its arguments 
till never need “dots”  to represent them (i.e., that at all 
levels the CDR of any subexpression is either NIL or 
nonatomic), it assumes that there is no circular list 
structure in the arguments, etc. This representation, too, 
proved well-suited for leading quickly to a definition of 
natural numbers (just by doing a substitution of T for 
an\.thing in a Lisp list), and that unary representation was 
critical to AM’s discovering arithmetic and elementary 
number theory. If somehow a place-value scheme for 
representing numbers had developed, then the simple 
route AM followed to discover arithmetic (simply 
applying Set-theoretic functions to “numbers”  and seeing 
what happened) would not have worked at all. It’s fine 
to ask what happens when you apply BagUnion to three 
and two, so long as they’re represented as (T T T) and (T 
Tj: the result is (T T T T T). i.e. the number five in our 
unary representation. Try applying BagUnion to 3 and > 
(or to any two Lisp atoms) and you’d get NIL, which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIS 

no help at all. Using bags of T’s for numbers is ta 
into the same source of power as Gelernter 11963 P 

ping 
did; 

namely, the power of having an analogic representation, 
one in which there is a closeness between the data 
structures employed and the abstract concept it 
represents -- again, an issue of the relationship between 
form and function. 

Thus, to some extent, even when discussing the 
meaning of a concept as portrayed in its characteristic 
function, there is some aspect of that meaning that we 
must attribute to it. namely that aspect that has to do 
with how w’e wish to interpret the data structures it 
operates on. That is, although the system in principle 
contains a complete characterizatton of what the 
operators of the language mean (the system has 
embedded within itself a representation of EVAL -- a 
representation that is, in principle, modifiable by the 
system itself) the system nevertheless contains no theory 
as to what the data structures denote. Rather, ,ve (the 
human observers) attribute meaning to those structures. 

AM (and any AI program) is merely a model, and by 
watching it we place a particular interpretation on that 
model, though many alternatives may exist. The 
representation of a concept by a Lisp encoding of its 
characteristic function may very well admit only one 
interpretation (given a fixed EVAL, a fixed set of data 
structures for arguments, etc.) But most human 
observers looked not at that function but rather at the 
underconstrained declarative information stored on slots 
with names like Domain/Range, HowCreated, 
Generalizations, ISA, Examples, and so on. We find it 
provocative that the most useful heuristics in Eurisko -- 
the ones which provide the best control guidance -- have 
triggering conditions which are also based only on these 
same underconstraining slots. 

Going over the history of AM, we realize that in a 
more fundamental way we -- the human observers -- play 
another crucial role in attributing “meaning”  to a 
discovery in AM. How is that? As is clear from the fact 
that Eurisko has often sparked insights and discoveries, 
the clearest sense of meaning may be said to reside in the 
way its output jogs our (or other observers’) memory, the 
way it forces us to attribute some meaning to what it 
claims is a disco\,eryv. Two examples, drawn from 
Donald Knuth’s experiences in looking o\er traces of 
AIM’s behavior, will illustrate the two kinds of “filling in”  
that is done b! human beings: 

(i) See AM s definition of highly composite numbers, 
plus its claim that they. are interesting, and (for a very 
different reason than the program) notice that they 
are interesting; 
(ii) See a definition of partitioning sets (an operation 
that was never judged to be interesting by AM after it 
defined and studied it), recognize that it is the 
definition of a familiar, worthwhile concept, and 
credit the program with rediscovering it. 

While most of A-M’s discoveries were judged 
interesting or not interesting in accord with human 
judgements, and for similar reasons, errors of these two 
types did occur occasionally, and indeed errors of the 
first type have proven to be a major source of synergy in 
using Eurisko. To put this cynicall!. the more a working 
scientist bears his control knoivlsdge (audit trail) to his 
colleagues and students, the more accurately they can 
interpret the meaning of his statements and discoveries, 
but the less like/j, they w?ll be to come up (via being 
forced to work to find an interpretation) with different, 
and perhaps more interesting, interpretations. 

Conclusion 

We halve taken a retrospective look at the kind of 
activity AaM carried out. Although we generally 
described it as “exploring in the space of math concepts” , 
what it actually was doing from moment to moment was 
“syntactically mutating small Lisp programs” . Rather 
than disdaining it for that reason, we saw that that was its 
salvation, its chief source of pow’er, the reason it had such 
a high hit rate: AM was exploiting the natural tie 
between Lisp and mathematics. 

We ha\,e seen the dependence of AM’s performance 
upon its representation of math concepts’  characterisitic 
functions in Lisp, and in turn their dependence upon the 
Lisp representation of their arguments, and in both cases 
their dependence upon the semantics of Lisp, and in all 
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those &es the depkndence upon the obser\ler’s frame of 
reference. The largely fortuitous “ impedance match”  
between all four of these, in AM, enabled it to proceed 
with great speed for a while, until it moved into a less 
well balanced state. 

One of the most crucial requirements for a learning 
system, especially one that is to learn by discoverv, is that 
of an adequate representation. The paradigm for 
machine learning to date has been limited to learning 
new expressions in some more or less well defined 
language (even though, as in AM’s case, the vocabulary 
may increase over time, and, as in Eurisko’s case, even 
the grammar might expand occasionally). 

well 
If the language or representation employed is not 

matched to the domain objects and operators, the 
heuristics that do exist will be long and awkwardly stated, 
and the discovery of new ones in that representation may 
be nearly impossible. As an example, consider that 
Eurisko began with a small vocabulary of slots for 
describing heuristics (If, Then), and over the last several 
years it has been necessary (in order to obtain reasonable 
performance) to evolve two orders of magnitude more 
kinds of slots that heuristics could have, many of them 
domain-dependent, many. of them proposed by Eurisko 
itself. Another example 1s simply the amount of effort 
we must expend to add a new domain to Eurisko’s 
repertoire, much of that effort involving choosing and 
adjusting a set of new domain-specific slots. 

The chief bottleneck in building large AI programs, 
such as expert systems, is recognized as being knowled e 
acquisition. There are two major problems to tackle: $ i) 
building tools to facilitate the man-machine interface, 
and (ii) finding ways to dynamically devise an 
appropriate representation. Much work has focused on 
the former of these, but our experience with AM and 
Eurisko indicates that the latter is just as serious a 
contributor to the bottleneck, especially in building 
theory formation systems. Thus, our current research is 
to get Eurisko to automatically extend its vocabulary of 
slots, to maintain the naturalness of its representation as 
new (sub)domains are uncovered and explored. This 
paper has raised the aiarm; another longer one [Lenat 
83b] discusses the approach we’re following and progress 
to date. 
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