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How Does Information Quality 
Affect Stock Returns? 

PIETRO VERONESI* 

ABSTRACT 

Using a simple dynamic asset pricing model, this paper investigates the relation- 
ship between the precision of public information about economic growth and stock 
market returns. After fully characterizing expected returns and conditional vola- 
tility, I show that (i) higher precision of signals tends to increase the risk premium, 
(ii) when signals are imprecise the equity premium is bounded above indepen- 
dently of investors' risk aversion, (iii) return volatility is U-shaped with respect to 
investors' risk aversion, and (iv) the relationship between conditional expected re- 
turns and conditional variance is ambiguous. 

IN MODERN FINANCIAL MARKETS, investors are flooded with a variety of infor- 
mation: corporations' earnings reports, revisions of macroeconomic indexes, 
policymakers' statements, and political news. These pieces of information 
are processed by investors to update their projections of the economy's fu- 
ture growth rate, inflation rate, and interest rate. In turn, these changes in 
investors' expectations affect stock market prices. However, even though it is 
clear that asset prices react to new information, several questions arise re- 
garding the relationship between the quality of information that investors 
receive and asset returns. For example, what kind of effect does a noisy 
signal on the "health" of the economy have on stock market prices? If infor- 
mation is noisy, is there a risk premium? Or is the risk premium completely 
independent of the quality of information investors receive? Also, how does 
the precision of the signals affect stock market volatility? If signals are more 
precise, does stock market volatility decrease or increase? Finally, can we 
infer how good investors' information is from the behavior of stock market 
returns? 

In this paper I study a dynamic asset pricing model where I try to answer 
the above questions. Specifically, I assume that stock dividends are gener- 
ated by a diffusion process whose drift rate is unknown to investors and may 
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change at random times. Investors learn about the "true" drift rate through 
the observation of realized dividends and another noisy signal, which prox- 
ies for the many sources of information I refer to above. The main objective 
of the paper is to characterize equilibrium asset returns when different as- 
sumptions on the precision of information-that is, the noise of the signal- 
are made. 

The first surprising result is that more precise signals tend to increase 
rather than decrease the equity risk premium-that is, there is no risk pre- 
mium for noisy signals. The converse is also surprising: When signals are 
noisy, there is an upper bound to the equity premium and this upper bound 
is independent of investors' degree of risk aversion. Hence, the Mehra and 
Prescott (1985) equity premium puzzle becomes even more puzzling under 
the assumption of noisy information because the actual equity premium can- 
not be matched by assuming a high degree of risk aversion. 

To understand the intuition behind these results, consider the second re- 
sult first. As an extreme and simple case, suppose that dividend realizations 
are the only signal investors receive about a constant dividend growth rate. 
Typically then, negative dividend innovations imply a downward revision of 
expected future dividends and hence of future consumption, because divi- 
dends and consumption are highly correlated (in fact, equilibrium market 
clearing conditions require them to be equal). Hence, risk-averse investors 
increase their hedging demand for the asset to avoid very low levels of con- 
sumption in the future. This latter effect tends to increase the stock price, 
thereby counterbalancing its tendency to fall due to the initial negative shock 
to dividends. When investors are sufficiently risk averse, the positive effect 
on the stock price due to investors' hedging demand for stocks tends to dom- 
inate. As a consequence, a drop in current consumption due to a negative 
innovation in dividends is associated with a small decrease or even an in- 
crease in the stock price. That is, in equilibrium the covariance between 
consumption and returns is small or even negative for high levels of risk 
aversion. This implies a small or negative risk premium. Indeed, when the 
coefficient of risk aversion is sufficiently high a further increase in risk aver- 
sion decreases the risk premium because of the indirect effect on the covari- 
ance of returns and consumption. This implies an upper bound to the equity 
risk premium. 

Turning now to the opposite result-that more precise signals increase the 
risk premium-consider once again an extreme example. Suppose that in- 
vestors know exactly the constant drift rate of the economy: In this case 
innovations in dividends do not change investors' expectations of future div- 
idends. Since a higher dividend implies a higher price for given expectations 
of future consumption, returns and consumption have positive covariance. 
This implies a positive equity risk premium. Moreover, just as in the equity 
premium puzzle literature, a higher coefficient of risk aversion increases the 
equity risk premium. 

The above argument also entails that the precision of signals affects the 
equilibrium conditional return volatility. Indeed, I show that when signals 
are imprecise, volatility is first decreasing and then increasing in investors' 
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degree of risk aversion. However, the effect becomes less and less relevant 
as we increase the precision of signals. The intuition stems again from the 
hedging demand for the asset: When signals are imprecise, dividend real- 
izations have an impact on investors' hedging demand which tends to de- 
crease the volatility of returns compared to the "dividend" volatility. However, 
for a sufficiently high risk-aversion coefficient, the indirect effect on the 
hedging demand dominates increasing return volatility again-hence the 
U-shaped function of volatility with respect to the coefficient of risk aversion. 

An implication of the above discussion is that the relationship between the 
conditional risk premium and the conditional variance of returns depends on 
the precision of signals, and this relationship is generally ambiguous: When 
signals are precise, expected excess returns are positively related to their 
conditional variance, but the opposite may be true when they are imprecise, 
depending on the level of investors' uncertainty about the true drift of the 
economy. This finding helps in explaining the lack of empirical support of a 
positive relationship between expected excess returns and their conditional 
variance (see, e.g., Campbell et al. (1999) and Scruggs (1998)). 

These results also point at an important difference between current divi- 
dend realizations and external signals as predictors of future economic per- 
formance. Dividend realizations both change investors' current consumption 
sets and modify their expectations: Since asset returns depend on changes in 
expectations through changes in investors' hedging demand for the asset, 
this dual role of dividends introduces a special covariance between contem- 
poraneous consumption and stock returns, positive or negative depending on 
investors' preferences. In contrast, external signals only affect expectations 
and cannot change investors' current consumption sets. As a consequence, 
when we increase the precision of external signals we are also decreasing 
the sensitivity of investors' hedging demand to dividend realizations. When 
signals are perfect, there are no variations in hedging demand due to divi- 
dend realizations. 

As to the methodology of the paper, I find it useful to discretize the pa- 
rameter space-that is, the set of possible drifts for the dividend process-to 
obtain the dynamics of investors' beliefs in closed form. This approach en- 
ables me to show that a stock's expected return and volatility depend on a 
single quantity that summarizes both investors' degree of uncertainty on the 
true drift of the dividend process and the "relevance" of this uncertainty to 
asset pricing. For example, this quantity is zero either when investors have 
perfect information or when the price of the asset is independent of the drift 
rate of the economy, as in the case where investors have logarithmic utility. 
In the latter instance of course uncertainty does not matter for asset pricing. 
On the other hand, this quantity is increasing (in absolute value) both with 
the "dispersion" of investors' beliefs around the expected growth rate of div- 
idends and the relative difference in asset prices conditional on the various 
states. 

This paper is most closely related to the literature on learning in financial 
markets. Notable works in this area are Williams (1977), Dothan and Feld- 
man (1986), Gennotte (1986), Detemple (1986, 1991), Feldman (1989), Bar- 
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sky and DeLong (1993), Timmerman (1993), Wang (1993), Detemple and 
Murthy (1994), Brennan and Xia (1997), David (1997), Veronesi (1999), and 
Zapatero (1998). These papers give various characterizations of portfolio al- 
location rules, term structure models, and stock returns when investors learn 
about some unknown parameters of the economy. However, none of these 
papers investigates the issues that I specifically address here-that is, the 
effect of the precision of external signals on the equilibrium stock return 
process. 

The paper develops as follows: The next section introduces the setup of the 
simple economy, Section II describes the dynamics of investors' beliefs, and 
Section III characterizes the stock returns and investors uncertainty. Sec- 
tion IV concludes. All proofs are in the Appendix. 

I. The Economy 

Consider a standard pure-exchange economy (Lucas (1978)) populated by 
a continuum of identical investors with isoelastic utility functions, 

cl-Y 
u(c,t) - e- t C 

where y is the coefficient of relative risk aversion and b the discount rate. I 
assume that investors' opportunity set comprises a risky security, whose 
stochastic dividendl is denoted by D, and a bond, whose risk-free rate of 
return is r. Dividends grow according to the following process: 

dD = ODdt + oJDDdBD, 

where BD denotes a standard Brownian motion. I assume that investors do 
not observe the drift 0(t). They only know that it can be any of n possible 
values 01 < 02< ... < On and that in any infinitesimal time-interval A there 
is probability piX that a new drift will be chosen according to the probability 
distribution f = (f1, .. ., fn). Since there are no restrictions on n, we can think 
of the points in 0 {= 01,...,n0} as forming a fine grid on the real interval 
[01 On] 0 

Even though investors do not observe the true drift, I assume they observe 
a noisy signal: 

de Odt + JedBe, 

where Be is a standard Brownian motion independent of BD. This form of the 
signal is the continuous time analog of the standard "signal equals funda- 

'Dividend and output are used interchangeably throughout the paper. Since, in equilibrium, 
output also equals consumption, the three words are actually synonyms in this setup. 
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mentals plus noise;" that is, et = St + t with st normally distributed, in a 
discrete time model (e.g., see Detemple (1986)). The inverse of the diffusion 
parameter, 

he l/Se 

reflects the precision of the external signal. I say that investors have precise 
signals when he is relatively high. When p = 0 and he approaches infinity, 
the model gets closer to the standard textbook model where investors know 
the constant drift rate 0. Similarly, the precision of the "dividend signal" is 

hD = 1IOD 

The main goal of this paper is to characterize asset returns in this economy 
with parameter uncertainty and study their behavior for different values of 
the precision of the external signal he. Equilibrium prices and interest rates 
are determined in equilibrium by standard market clearing conditions. Spe- 
cifically, if P denotes the price of the risky asset and r the instantaneous 
interest rate, then investors choose the fraction of wealth invested in stock, 
a(t), and consumption, c(t), in order to solve the maximization problem: 

maxE fu (c, s) ds JF(0)1, (1) 

subject to 

~ dP + DdtX 
dW W La pDt + (1- a)rdt -cdt. (2) 

An equilibrium is defined by a vector of processes (c(t),a(t),P(t),r(t)) such 
that the maximization problem is solved and markets clear. That is, a(t) =1 
and c(t)= D(t). 

II. The Dynamics of Investors' Beliefs 

Let me denote investors' information set at time t by SF(t). This contains 
all past realizations of dividends and signals. Let - i(t) be investors' beliefs 
that the drift rate is Oi at time t, conditional on their information 2F(t): 

-iTi (t ) = Prob (Of (t ) = Oi I.F(t )). (3) 

Also, let me denote the vector of these probabilities by H = (T... ,n) 

This distribution summarizes investors' overall information at time t. Given 
these beliefs, they can compute the expected drift rate at time t: 

n 
m-E (0 2|F(t)) = ri Oi. (4) 

i=l 
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The following lemma shows that the evolution over time of investors' be- 
liefs -ri(t) can be described as a diffusion process. 

LEMMA 1: (a) Suppose that at t 0 investors' beliefs are represented by the 
prior probability distribution (7rl...t n). Then, for all i = 1,...,n: 

d7i = p( fi- ri)dt + 7ri(Oi-mo)(hDdBD + hedBe) (5) 

for t - 0 subject to the initial condition ri (0) = iri for all i = 1,...,n. In this 
equation 

dD 
dBD hD D - modt) 

dBe he(de - modt) 

are standard Brownian motions with respect to the information filtration 
I(tV). 

(b) For all i 1,...,n, if ni-(O) > 0 then for every finite t, 

Prob(wri(t) > 0) - 1. 

Expression 5 is quite intuitive: The stochastic components dBD and dBe 
are the normalized innovation processes of dividend and signal realizations. 
Since each of them enters in equation (5) normalized by its own precision 
parameter, signals have greater weight in investors' posterior distribution 
than dividends whenever they have higher precision-that is, whenever 
he > hD. The drift p (fi - -ri) is a mean-reverting component that pulls rii 
toward fi, which is the relative proportion of time that O(t) equals 0i in the 
long run. It is intuitive that, other things equal, a higher frequency p of 
shifts implies that the conditional distribution (7rn... ) is "closer" to the 
unconditional one (f1,..., fn). Hence, the speed of mean reversion in equa- 
tion (5) is given by p.2 

In order to gather some more intuition about the process of equation (5), it 
is useful to rewrite it in terms of the original processes BD and Be. This 
exercise yields the description of the process diri from the perspective of an 
outside observer who knows that during some time interval [t1, t2] the true 
drift rate 0(t) is equal to a particular 0f. As the following corollary shows, 
we can then gauge how the precision of the signals affects the dispersion of 
investors' beliefs around the true state. 

2 Notice also that every solution (QT1(t).....,(t)) to equation (5) has the property that for all 
t> O, 0 - I ;Trj(t) = 1. In fact, from Ito's lemma it can be immediately verified that the quantity 
S 1 Sn1 is such that dS = 0 for all t. See Liptser and Shiryayev (1977) for details. 
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COROLLARY 1: Suppose that the conditions of Lemma 1 are satisfied and let 
the true state be 0(t) = 0f for t E [t1,t21. Then, for t1 < t < t2 and for all 
i n: 

d Tj = [p ( fi - -rj) + k rj(0i - mo)(Oe - m6)]dt 

+ iri(Oi - mo)(hDdBD + hedBe), (6) 

where 

k = h2 + h2. 

Expression (6) shows that when Se is the actual drift rate of the observable 
processes dD and de during some period of time [t1, t2], the drift of d-ri has 
a second component kirj(0j - mf)(Of - min) which tends to pull irj toward one 
if i = f and toward zero if i f f. In fact, notice that for i = f this second 
component equals k7rf(Of - rMn)2 > 0, and hence it has the effect of increas- 
ing 17rf over time. However, as -7rf gets closer to one, the term (0O - min) 

converges to zero and so do both k-rk (0f - mrn)2 and the diffusion term in 
equation (6). Hence, eventually the first component in the drift p ( f - re) 
would dominate, preventing -7rf from converging to one. Moreover, the speed 
at which -7rf is attracted to one is given by the constant k, which in turn 
depends on the precision of the signal he: Higher precision implies faster 
learning. Of course, for i f f the probability ri-j tends to converge to zero. 

In summary, the specific intertemporal behavior of investors' beliefs de- 
pends on the relative sizes of the parameters p and k. For given p the dis- 
tribution LI tends to be more concentrated when signals are more precise 
(higher k), for given k the distribution tends to be closer to the stationary 
f (f fi... , f) when p is higher. Notice finally that part (b) of Lemma 1 
implies that if investors give a positive probability to each state Oi at time 
zero, then irj(t) > 0 for all i = 1,...,n and all t. I will assume throughout 
that -rj(t) > 0 for all i and t. 

III. Asset Prices, Excess Returns, and Investors' Uncertainty 

In this section I obtain formulas for the equilibrium stock price and in- 
terest rate and then study the behavior of stock market returns. 

PROPOSITION 1: (a) The equilibrium price function P(H,D) is 

P(H,D)=D E TjCi (7) 

where Ci are positive constants characterized by 

I 0rm 
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(b) The equilibrium interest rate r is: 

r b + ymo-2(+1)o. (8) 

Each constant Ci represents the investors' expectation of future dividends 
conditional on the state being Oi today, discounted by the marginal utility of 
consumption and normalized to make it independent of the current dividend 
and time. Hence, a high Ci implies that investors would be willing to pay a 
high price relative to the current dividend in state Oi. Since they do not 
actually observe the state Oi, they weight each Ci by its conditional proba- 
bility -ri, thereby obtaining equation (7). 

The next proposition characterizes equilibrium stock returns. For nota- 
tional convenience, let me denote the total excess returns by 

dP + Ddt 
dR - - rdt. (9) 

P 

PROPOSITION 2: The equilibrium excess returns follow the process: 

dR = Rdt + (o-D + hDVO)dBD + V6hedBe, (10) 

where 

1R = y(OD + V0) (11) 

n 

E7i Ci (O1 - Min) 

vo 
= 

n ~~~~~~~~~(12) 
E Ti Ci 

i=1 

Notice both the drift and the volatility of equilibrium stock returns can be 
fully characterized by studying the behavior of a single quantity V0. This 
task is undertaken below. 

A. Investors' Uncertainty 

In this section I discuss the behavior of the quantity V0 that characterizes 
the stock return process given in equation (10). Let me define the following 
adjusted distribution on the state space ( = (01 ,On): 

i n1 (13) 

j=1 
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The distribution Hl* = (r... ,rn) is adjusted to reflect the investors' mar- 
ginal valuation of the risky asset in the various states. I call this distribu- 
tion the value-adjusted distribution. Let 

n 
M= E*(0IT(t)) E i (14) 

i0=l 1 

be the expected growth rate of the economy according to the value-adjusted 
distribution. It is immediate to see that 

V=m - mO (15) 

Therefore, V0 reflects the relative distance between the true expected growth 
rate of the economy and the value-adjusted expected growth rate. Intu- 
itively, V0 can be considered a summary of both investors' degree of uncer- 
tainty about the true growth rate 0 as well as the impact of this uncertainty 
on the investors' own valuation of the asset. For example, when H is a de- 
generate distribution giving probability one to a state Se or when Ci is con- 
stant for all i, then V0 is zero. In the first case there is no uncertainty; in the 
second case uncertainty does not matter because investors assign the same 
value to the asset in every state. However, in general V0 is different from 
zero; in fact, V0 tends to be bigger (in absolute value) either when investors 
have more diffuse beliefs or when they value the asset very differently across 
states. 

Finally, the sign of V0 is also important: If V0 is positive, then on average 
investors deem the asset more valuable in states that have higher growth 
rate than mi, whereas when V0 is negative they deem the asset more valu- 
able in states with a lower growth rate. 

The following two lemmas make the above statements formal: The first 
characterizes the vector C and the second the quantity V6. 

LEMMA 2: Define the constant 

n f 

K~ 
- 

p?(y-10,?1 - 2 (16) i= ,+P + (tY - 1)0i + 2)'Y(1 -Y)-D (6 

and let C(0) be the continuous function on the interval [0r,0On] defined as: 

1 

C(0) (~?+p + (y - 1)0 + ly(l - y)oD)(1 -pK) (17) 

Then, for all i = 1,...,n, we have Ci = C(0i). 
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The function C(O) is monotonic and convex, and it is decreasing in 0 if and 
only if y > 1. That is, investors who are more risk averse than the log-utility 
investor assign a lower relative value to the asset in higher growth rate 
states. From the definition of C1 in Proposition 1 this is not surprising; in 
fact, investors discount future dividends using their marginal utility of fu- 
ture consumption. Since in equilibrium consumption equals dividends, even 
though a higher growth rate implies a higher expectation of future consump- 
tion, investors' discount rates are also higher. It is easy to see that the effect 
on the discount rate dominates when y > 1. In other words, when investors 
with high coefficients of risk aversion expect low consumption growth, their 
hedging demand for assets increases. Since the supply of the risky asset is 
fixed while the riskless asset is in zero-net supply, this demand for assets 
decreases the interest rate and increases the price of the risky asset relative 
to dividends. This implies that C(O) is decreasing. Figure 1 plots the func- 
tion C(O) for various values of y. 

LEMMA 3: V. can be characterized as follows: 

(a) V,, < 0 if and only if y > 1. Vo = 0 if and only if y = 1. 
(b) Let C(O) be nonconstant and let 11 be a mean-preserving spread of II.3 

Then V, < V, if y > 1 and Vf7 > V6 if y < 1, where "-" denotes a 
quantity computed using the distribution H. 

(c) V, decreases as y increases. 

Part (a) of Lemma 3 shows that if investors have high risk aversion, then 
the value-adjusted distribution gives more weight to the low-growth states. 
This result stems immediately from the fact that C(O) is decreasing and 
convex for y > 1. 

Part (b) of the lemma instead shows that an increase in "uncertainty" on 
the growth rate of the economy increases Vo in absolute value. The intuition 
is straightforward as well: A mean-preserving spread increases the disper- 
sion of the distribution H and hence the relative weight given to the tails of 
the distribution. Since the function C(O) is convex, the value-adjusted prob- 
ability distribution becomes even more skewed toward the high-value states. 
This increases the effect of the value adjustment, thus the absolute distance 
between m, and mo increases. 

Part (c) relates the measure Vo to the preference parameter y. The reason 
that it holds can be grasped from Figure 1: When y < 1, an increase in y 
makes C(O) less convex and hence the effect of the value adjustment on the 
mean growth rate m, decreases. Hence, Vo = m, - mo decreases as we in- 
crease y toward one. When y > 1, an increase in y increases the convexity of 

3 A mean-preserving spread of the distribution 11 is given by II defined by Fri = 7ri + si where 
for i1 < i2 < i3 < i4, Sil = -Si2 = a > 0, Si4 = -Si3 = 8 > 0, Si = 0 otherwise, and such that 
1 > vi > 0 and a(0ji - 0i2) = P(Oi3 - ?i4)- Intuitively, a mean-preserving spread moves probability 
mass from the "center" of the distribution toward its "tails" without changing the mean (see, 
e.g., Ingersoll (1987)). 
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C(0), thereby increasing the effect of the "value adjustment" on the mean 
growth rate mn. This increases Vo in absolute value. Since Vo is negative for 
y > 1, this implies that Vo decreases further as we increase y. 

B. Investors' Uncertainty and Expected Stock Returns 

This section discusses the features of investors' expected returns I-CR. 

start with a formal characterization in the following proposition. 

PROPOSITION 3: 

(a) If y > 1, then higher uncertainty decreases the risk premium. That is, 
a mean-preserving spread on investors' beliefs fI decreases ICtR. 

(b) If either m6 > o-D + 01 or 71 < 71 where 7-T, is given in equation (A35) 
of the Appendix, the expected excess return AR decreases with y for y 
sufficiently high. Hence, ,CR is bounded above. 

(c) If m6 > oD + 01, there is y- such that gR < 0 for y > y. Moreover, a 
mean-preserving spread on fI decreases -y. 

Part (a) of Proposition 3 shows that there is no premium for uncertainty. 
Actually, quite the opposite holds. From the characterization of the proba- 
bility distribution in Lemma 1 a low precision of signal he implies that the 
posterior distribution H tends to be more diffuse on the space O. Hence, 
Proposition 3(a) implies that when public signals are less precise the ex- 
pected excess return is smaller. In other words, when there is "better" in- 
formation about the state of the economy, there is also a relatively high risk 
premium. As explained in the introduction, the intuitive explanation of this 
seemingly paradoxical result stems from the standard result that the risk 
premium depends on the covariance of consumption growth and stock re- 
turns; that is, 

2 ~ ~ ~ I dc 
bR = Y(CD +VO)=YXCOV (dR, (18) 

When the external signal is very precise, the covariance between consump- 
tion and stock returns is higher than in the case where signals are less 
precise. In fact, in the latter case a negative innovation in dividends has the 
direct effect of decreasing the price of the stock and the indirect effect of 
increasing investors' hedging demand for the asset because they now expect 
lower consumption in the future. This indirect positive effect on the price 
partly dampens the negative direct effect due to the decrease in dividends. 
However, as we increase the precision of the signal he, investors' hedging 
demand is less and less affected by dividend realizations because investors' 
expectations depend more and more on the signal. Since in equilibrium div- 
idends equal consumption, the above discussion entails that as we increase 
the precision of external signals the covariance of returns and consumption 
increases and so does the risk premium. 
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Part (b) of this proposition shows that when either investors' expected 
growth rate is not too low or 7T, is not too high, there is an upper bound to 
the risk premium. The intuition for this result is related to that of part (a): 
As usual, for given positive covariance of returns and consumption growth, 
higher risk aversion implies a higher risk premium. When signals are not 
precise though, an increase in risk aversion also implies a bigger impact of 
dividend realizations on investors' hedging demand. As we saw above, this 
decreases the covariance itself. Moreover, the second effect dominates for 
very high y so that /UR decreases as y increases. I should point out that the 
conditions of Proposition 3(b) are generally satisfied when signals are not 
precise and n is large, so that the distribution 1H is diffuse. In fact, for typical 
parameter values of 0, p, and o-D, -Jr is extremely high, well above 0.85. 

Finally, part (c) shows that when investors' expected growth rate is not too 
low, the risk premium turns negative when investors are sufficiently risk 
averse. Once again, this result stems from the fact that high expected future 
dividends tend to decrease the covariance between current returns and con- 
sumption growth. For sufficiently high y this covariance becomes negative 
(see Campbell (1999) for a discussion of a related point). 

Figure 2, Panel A, plots ,UR against the standard deviation of investors' 
beliefs o-- = In '7T(Oi - _Mn)2 for various coefficients of risk aversion.4 
As ro- increases, bR decreases and becomes negative for a high y. Simi- 
larly, Figure 2, Panel B, plots LR against the coefficient of risk aversion y for 
ro- = 0.11%. To better understand the effect of changing uncertainty over 

time, Figure 3, Panel A, plots LR for various values of y resulting from one 
simulation of dividends and posterior distributions. We can see that a high 
y does not imply a high ,UCR, which at times can turn negative. From Fig- 
ure 3, Panel B, we also notice that IR decreases when o increases. 

C. Investors' Uncertainty and the Conditional Volatility of Stock Returns 

From the equilibrium process for returns (equation (10)) it is immediately 
evident that the quantity V.7 characterizes return volatility as well. In fact, 

o-R o= CD+ VO[2 + (he + hD)V0]. (19) 

The following proposition then holds. 

PROPOSITION 4: 

(a) o-R is a U-shaped function of y with CR = CD for y = 1. Moreover, a 
mean-preserving spread on LH increases CR if CR > o-D. The effect is 
ambiguous if CR < oD- 

(b) Under the conditions of Proposition 3(c), if he > hD then CR > CD for 
a sufficiently high coefficient of risk aversion. 

4 The following parameters are used (in monthly units): o-D= 1.5%, p = 1.67% , ore = 00 (no 
external signal), and o = 0.11% for Figure 2, Panel B. 
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The intuition behind the results in Proposition 4 is the same as the one for 
the risk premium. For logarithmic investors, uncertainty (and hence the 
precision of signals) does not matter because they value the asset the same 
independently of the state. Hence V6 = 0 and oR o-D. When there is un- 
certainty about the true drift (Hl nondegenerate), if y > I any positive in- 
novation in dividends increases the price but decreases investors' hedging 
demand due to the increase in investors' expectations of future consumption. 
Hence, the effect on the price of dividend realizations is not as strong and 
return volatility decreases. However, for very high levels of risk aversion the 
effect on the hedging demand outweighs the direct effect on the price, thereby 
increasing volatility again. In contrast, for y < 1 a positive realization of 
dividends increases investors' demand for the asset (substitution effects dom- 
inate), thereby further increasing the price of the stock. Hence oR > (oD if 
y < 1. 

D. The Risk Premium and the Conditional Variance of Returns 

From the results about risk premium and return volatility, it is clear that 
the relationship between return volatility and expected returns is ambigu- 
ous and depends on the degree of investors' uncertainty. This statement can 
be made precise by noticing that from equations (11) and (19) we can write 

IJR = R2- yVO[1 + (he + hD)V0]. (20) 

It is apparent then that the relationship between the conditional risk pre- 
mium and the conditional variance of returns is linear but investors' uncer- 
tainty biases this relationship through V0 in an ambiguous way. In fact, the 
second term in equation (20) can be positive or negative depending on the 
magnitude of V0. Specifically, for log-utility or when signals are very precise, 
Vo is approximately zero and hence a linear positive relationship results. 
In contrast, when y > 1 and signals are not precise, the second term 
in equation (20) is positive for - 1/(h2 + h2) < V0 < 0 and negative for V0 < 

- 1/(h2 + h2). Since the magnitude of V0 changes over time due to investors' 
fluctuating level of uncertainty, equation (20) implies that there is no pre- 
cise relationship between expected excess returns and conditional volatility. 
Indeed, the empirical finance literature has long documented that the evi- 
dence for a positive relationship between expected returns and conditional 
return variance is very weak at best (e.g., see Campbell et al. (1999) and 
Scruggs (1998)). 

IV. Conclusions 

This paper shows that the relationship between the precision of public 
information about economic growth and the performance of the stock market 
is nontrivial. In a standard Lucas economy where the growth rate of output 
is unknown but where investors receive signals about it, I obtain results on 
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equity premium and return volatility that can be deemed counterintuitive at 
first: (i) More precise signals on the true state of the economy-that is, 
better information-tend to increase the equity premium. Therefore, poor 
information does not demand a risk premium. (ii) If information is impre- 
cise, then an increase in the risk aversion coefficient does not necessarily 
increase the equity risk premium. In fact, there is an upper bound to the 
equity risk premium. Moreover, higher uncertainty (i.e., poorer signals) im- 
plies that the upper bound is achieved for a lower coefficient of risk aversion 
y. (iii) When signals are imprecise, return volatility is U-shaped with re- 
spect to investors' coefficient of risk aversion. (iv) The relationship between 
expected returns and return volatility is ambiguous and depends on inves- 
tors' level of uncertainty. 

The channel through which the precision of public information affects stock 
returns is its influence on the equilibrium covariance between current con- 
sumption and returns. In fact, there is a qualitative difference between div- 
idends and "other statistics" as signals of future economic performance: Though 
"other statistics" affect only investors' expectations, dividend realizations also 
affect investors' consumption possibilities. Hence, the implied covariance be- 
tween consumption and return is modified as we change the precision of 
external signals. 

A few final remarks are in order. First, the model implies that when the 
external signals are not precise the conditional expected excess return may 
become negative when the coefficient of risk aversion is high. This occurs 
when investors' uncertainty increases. The same factor also decreases the 
dividend yield, thereby generating a positive relation between dividend yield 
and expected returns. A very low dividend yield may be associated with a 
negative risk premium (e.g., see Lamont (1998)). 

Second, the empirical literature has had a hard time determining the re- 
lationship between expected returns and their conditional variance (see, e.g., 
Campbell et al. (1999) and Scruggs (1998)). Result (iv) justifies this finding: 
Investors' fluctuating uncertainty over time about the true growth rate of 
the economy makes this relationship ambiguous because it introduces a bias 
that is at times positive (for low level of uncertainty) and at times negative 
(for high level of uncertainty). 

Third, the model developed in this paper assumes that investors have a 
power utility function. This choice enables me to obtain a simple closed-form 
solution for asset prices but it imposes also a specific relationship between 
investors' degree of relative risk aversion and their elasticity of intertempo- 
ral substitution, the latter being the reciprocal of the former. This strict 
relationship makes it more difficult to interpret exactly the comparative stat- 
ics results obtained in this paper. Nonetheless, the basic intuition developed 
in the model is likely to remain even under a more general utility function. 
In fact, an increase in risk aversion would still imply that investors' hedging 
demand for assets increases after bad news in dividends, thereby counter- 
balancing the negative pressure in prices due to the negative dividend news. 
With a power utility function this effect is strong because a higher risk aver- 
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sion implies a lower elasticity of intertemporal substitution, which in turn 
also increases the demand for the assets after negative shocks in dividends. 
In fact, negative dividend innovations signal lower future consumption, which 
in turn implies higher savings to smooth out consumption. The exact bal- 
ance between the two effects can only be assessed by using a more general 
utility function, such as Epstein and Zin (1989); this investigation is an 
interesting topic for future research. 

Finally, this paper investigates a particular type of quality of information: 
information about economic growth. There are other types of information 
that are certainly relevant and that are also worth investigating. These may 
include information about future volatilities or correlations for example. The 
effect of "information quality" on these variables may have different impli- 
cations on stock returns than the one discussed here. Also, it would be in- 
teresting to study how information quality about different firms' growth 
prospects affects their stock returns. The relationship between the cross sec- 
tion of returns and investors' information has been already addressed in the 
Bayesian CAPM literature (see, e.g., Barry and Brown (1985)). However, a 
model of intertemporal learning is still missing. One of the effects that we 
can reasonably expect is that equilibrium "betas" would tend to change over 
time as uncertainty fluctuates and investors' change their hedging demand 
for stocks. 

Appendix 

Proof of Lemma 1: (a) This is a slight generalization to the vector case of 
Theorem 9.1 in Liptser and Shiryayev (1977, p. 333). Let X(t) be an 
N-dimensional Ito process described by 

dX = udt + IdW, 

where W(t) is an M-dimensional Brownian motion. It is assumed that the 
N-dimensional vector , (t) follows an n state continuous-time Markov chain, 
where 

-E Ali A12 A13 ... Aln 
j#f 1 

A21 -, A2j A23 ... A2n 
j#2 

A A31 A32 - A3y ... A 

3 1 3 2 3j ... 3 n 

An 1 An 2 An 3 .. .-E Anj 
j:fn 
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is the infinitesimal matrix. Notice that for all i = 1,..., n, Aii = -Ijj Aii 
(e.g., see Karlin and Taylor (1975), p. 151). Both g and E can be functions of 
X. Then, the proposition of Theorem 9.1 in Liptser and Shiryayev becomes: 

THEOREM: Forgiven prior distribution (.l ... , 7T-) on (ui,. .., ,n), under some 
technical conditions (see Liptser and Shiryayev (1977)), the posterior probability 

vwi(t) = Prob (iz(t) = gi I.F(t)) 

satisfies the system of stochastic differential equations 

n 

d wri(t) = Aji Tj(t)dt + 7Ti(t)(,gi - )'(;>')-112dW (Al) 
j=1 

under the condition wr (0) = *i where 

A = Ej77Tj 
j=1 

dW = (1'< )-1/2 (dX - fdt). 

The proof of this claim is identical to that of Liptser and Shiryayev's Theo- 
rem 9.1 after the obvious changes are made. Similarly, Liptser and Shiryayev's 
Theorem 9.2 shows that under some technical conditions equation (Al) ad- 
mits a unique nonnegative strong solution. 

Finally, in order to obtain equation (5), we define X = (D,e)', ILi = (OiD,Oi)', 
11 = DoD, 122 = e' ij =0 for i f j, W = (BD,Be)', Aij = pfj for i f j, and 

Aii lj,oi Ai1 -p =P :fi fj = pf,-p. We then obtain 

d 7ri =(E pfi 7Tj - p7ri )dt + 7wi {(Oi -MO) D (dD - mODdt] 

+ (0i-mMO) |(de-modt)1} (A2) 

P(f, - rTi)dt + TJ(O, - mO)(hDdBD + hed3e). 

Finally, using the fact that dBD= dBD + hD(O(t) - mO)dt and dBe = dBe + 
he(O(t) - mO)dt, substitution in the above formulas yields equation (6). 

(b) See Lemma 9.3 in Liptser and Shiryayev (1977, p. 342). Q.E.D. 

Proof of Proposition 1: (a) From the first-order conditions on investors' 
portfolio problem we obtain the standard formula 

P(t)p(t) = Et p(s)D(s)dsl, (A3) 
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where p(t) = u(c(t),t) - e-oItc(t)-< is the stochastic discount factor. 
In a Lucas economy, in equilibrium the market for consumption goods must 
clear so that for every T we must have c(T) = D(T). Hence, we can deter- 
mine the asset pricing formula by substituting this equilibrium condition to 
obtain 

P(t) [fc (D(s) \1-y 
D(t) =ELi eEe-(s-t)(D(t)) dsIKF(t)1 (A4) 

Consider first the following conditional expectation: 

V(t, fJi) = E | ,e -O(9 ) D() dsIO(t) =Oi (A5) 

From the assumption on the dividend process we have 

D(t) exp( 0(u)du 
- 

- 

D(s-t) + 

JD(BD(S)-BD(0) 

(A) 
D (s) ex2~S1-B()) (6 

for s > t. As usual, the process 0(t) is assumed right-continuous; that is, 
limO 0(t + A) = 0(t). Hence, we can consider an infinitesimal time interval 
A such that if 0(t) = Oi there is probability o(A) that a shift occurs before 
time t + A (we take the limit as A -X 0 below). We can then write 

V(t,O) E= [ e -<k(s-t) (D(2)lYdsIO(t) =oi 

= EI e O(S-0)D() ds f9(t) = O] (A7) 

+ E[ e-;(-)Ds) dsIO(t) = i 

[ +tA ( D(t) N -) 

Hence, since 0(t) - Oi during the infinitesimal interval A, we immediately 
find: 

tE A / D(t) )tA e( -1 
E e -0(5t) D(s))1- dslo(t) = oi eOi(`t)ds =, 1 (A8) 
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where 
Oa= 

-b ? (1 - y)O2- v-y(1 - y). Similarly, since conditional on 0 (t) 
Oi during the infinitesimal interval A the random variables D(t + A)/D(t) and 
D (s)/D (t + A) are independent, the second expectation can be rewritten as 

00 D(XsI D(s 
Et e -O(S-0L D(t)/ Jt? =A) dsI Oi 

- ELe~'DA(t)))Ot E [e >Zv D(t + A) 1)Y DO( (st )1Y 

=E t KD(t A) ) dsI|t (t) 

+ Y9 AEt AE-0(-F e)s( D(s) )_ dl0(tt=i -(AY) 

[( (5t) +5 ( D(t + A)) 

D(t i+ A)+^ (Dt+1- s0( ) 

=E DOA L( - (AtA)V(t + A,O) + o AiJAV(t + A,Q)1 

Using a Taylor expansion, we can write V(t + A,O ) =V(t,0) + V'(t, ) A + 
0(A). Hence, overall we'Dobtain 

eOiA - 1 

V(t ei) fy +- Aj E e- (Vtds (;O)AEAiVti)lo + A) oij Vt > 

Rearranging and dividing by A, we have 

/k1-eI\A1 eS-1 / \t;u~) - f;j AiiV(t)) 
= e ) I AA Vt + A~ +eA V(t ; AV(t,;O) O ) 

(A10) 
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By taking the limit as A -X 0 and rearranging terms, we obtain a first-order, 
linear differential equation: 

VI (t; 0i ) = A Aij - O) V(t; Oj) )-E A ii V(t; Oj) -1. (All) 
j=ti joi 

Let V(t) = (V(t;01), . . . ,V(t; On))' and A = -A - (1 - y) diag(O) + (4 + 2y(l - 

y)uD)I so that 

V'(t) = AV(t) - in. 

We now realize that, by definition, V(t; i) is time homogeneous for all i, 
which implies that V'(t; i) = 0 for all i. Hence, the solution is easily ob- 
tained by solving on= AV(t) - in. That is, 

V(t ) =C = A-1lin . (A12) 

Since by definition P(t)/D(t) =i=lwjV(t,Oj), we obtain the claim. 
Finally, for the specification Aij = pfj for j / i, it is easy to see from AC 

in that for every i, we have 

1~~~~~~~~~ 
(+ ?P + (y - l)Oi + - (1- )Y=D j. (A13) 

Hence, since to have positive prices we need Ci > 0 for all is, the following 
condition must always be satisfied: For all i = 1, ... I, 

<t+p + (Y - l)Oi + 21_(I - Y) YOD ?(A4 

Lemma 2 shows that under a slightly stricter condition than that given in 
equation (A14), the system of equations (A13) has a unique solution. 

(b) Similar to case (a), it is possible to express the first-order conditions in 
differential form so that for every asset we have 

0 = pDdt + E [d ( pP) I T(t)]. (A15) 

The risk-free asset can be thought of as an asset yielding an instantaneous 
dividend D = rB, where the price of the bond is always equal to 1. Hence, we 
obtain 

rdt =-Et P . 
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It is easy to see that 

EtLpI - (++YmO- 2Y(y + 1)or2)dt. (A16) 

Q.E.D. 

Proof of Proposition 2: Notice first that from the definition of dBD, I can 
rewrite the dividend process as dD/D = m6dt + JDdBD. Applying Ito's lemma 
to equation (7), we obtain 

n n n 

dP = 
7rjCi dD + D C Cidrj + C Ci(dcridD) 

i=l i=li= 
(A17) 

n 

= P,tpdt + PJDdBD + D , Cj7Tj(0 - mo)(hDdBD + hedBe) 
i=l 

with 

AP =m + -p p Ci( fi -ViT) + Ci 7ri (Oin- M) 

Since from equation (7) D= P/(tn=1 Cjiji), the diffusion terms in equation 
(10) follow immediately. Next, for all i = 1,..., n, multiply both the right- 
and left-hand sides of equation (A13) by i and then sum across i = 1, .. ., n 
to obtain the equality 

1 2 n n nz it / 12 
+ + (1 - Y)YPD E Jji Ci + p E rTi Ci + (y 

- 1) , rTi Oi Ci = 1 + pE f Ci. 2 i=1 i=1 j= =1 

Manipulation of this expression yields 

n - \n n 

p Ci(fi -7i) 0 + -(I - ))/YD D qTi Ci + (y 
- 1) '7TiOi Ci -1 

Substituting this equality into ,tp along with D/P 1/(En1 Cw1Ti) yields 

n 

E Ci 7Ti Oi 

,iP = b+ -(1 -y)ycrj+ y 72 7 

i=l i=1 
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Finally, using equation (8) to write (b + '(1 - y)yo-D= r - ymo + yoD, we 
obtain 

n\ 

D ~~~Ci Ii (0i- MO) 

E(dR) R p + - - r(+ V). (A18) 
Ci Ti 

Q.E.D. 

Proof of Lemma 2: I prove the following claims: 

(a) Let Oi (+ ? (y - ')Oi ? 1(I - y)yo-D) and K U1f1/(fi + p) If 
K # lip, then the constants 

1 

i(Oi + p) (I - pK)(A9 
are the unique solution to the system of equations (A13). 

(b) Ci > 0 for all i = 1,..., n if and only if K < I/p and Oi + p > 0 for all 
i= ,...,n. 

(c) A sufficient condition for K < I/p and 0, + p > 0 for all i = 1,..., n is 
the following: For all i = 1,...,, 

+ (Y - l)0i + 2W - Y)YagO .(AD 

To prove claim (a) I first solve for the constants Ci, i = 1,.. ., ,that solve the 
system of equations (A13). From equation (A13), we can rewrite Ci as 

ci =i + +P (JE 
fi 

C) (A21) 

Multiply each side by fi and sum across i = 1,... , n to obtain 

n n n fi n 

fii= E 9 
f 

p + p i= 1i +P 
f 

s=1c , (A22) 

Taking the second term on the right-hand side to the left-hand side, and 
using the definition of K and the assumption that K / lip, we obtain 

( fjCj [1-pK] =K. (A23) 

Hence, we have jn fj Cj = K/(1 - pK). By substituting this quantity back 
into the right-hand side of equation (A21) we obtain Ci as in equation (A19). 
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For claim (b), suppose that K < I/p and Oi + p > 0 for all i = 1,.. , n; then 
equation (A19) implies that Ci > 0 for all i. Conversely, suppose that Ci > 0 
for all i. From equation (A14) we see that this implies O + p > 0 for all i. 
Given this result, from equation (A19) we have that Ci > 0 for all i also 
implies K < i/p. 

To prove claim (c), we see that condition (A20) clearly implies Oi + p > 0 
for all i = n ... , n. Moreover, from the definition of K we have 

f fi f fi 1 1 
K ?~<~ <- 

i=1 Oi +P i=1 min {fo} +P min {fil +P p 
i1 .n i1. n 

the last inequality stems from mini=1, .{Oi} > 0 because of condition 
(A20). Q.E.D. 

Proof of Lemma 3: (a) For given vector 
(n,. 

.. O n7 zj= Cj is a con- 
stant. Moreover, because for y > 1, Ci is monotonically strictly decreasing as 
i increases from 1 to n, we must have Ciln / j Cj monotonically decreasing 
with i. Since we must also have Cj/>jn=j>7Tj Cj > 1 > Cn /j=> 1 j Cj, it follows 
that there is a k such that 7iT= (Ci /Ejn. 7TjCj),7i > 7Ti for i < k and 7T 

(Ci1jjn=l 17jCj)G7i < 7-i for i - k. Since 61 < 02 < * < 6n, the average of the 
Ois using the distribution ( ...... ,T*) must be smaller than using the distri- 
bution (lTi ... , rn) because the former gives more weight to low 61s and less 
to high Ois than the latter distribution; that is, m* < in. Hence, V= 

- MnO < 0 if y > 1. The reverse argument holds for y < 1, in which case 
Ci is monotonically strictly increasing in i. 

(b) Consider a mean-preserving spread si on the distribution HI (see 
footnote 2) and denote the new distribution by H. We want to show that 
in' < m7 if y > 1 and in- > m* if y < 1, where in' is the mean growth rate 
computed using the probability II. 

Step 1: For y > 1, define the function g1(x) = C(x) x (x - 01) on the real 
interval [0160n], where C(x) is given by 

C(X) [(y - 1)x + AIB' (A24) 

where, from equation (17), A = b +p + 2 (1 - y) oD and B = (1 - pK). I first 
show that g1(x) is a concave function of x E [01, On . By differentiating gI 
twice with respect to x, we obtain 

gj"(x) = 2(y - 1)[(y - 1)6k +A] < 0 < y > (A25) 
[(y - 1)x + A]0B 

because from condition (A14) we have [(y - 1)x + A] > 0 for all x E C , n 
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Step 2: Since the expected value of a convex (concave) function increases 
(decreases) after a mean-preserving spread has been performed on the under- 
lying probability distribution (see, e.g., Ingersoll (1987, p. 116)), we have 

:n 1r1ig1(0i) > E,n1#rigl(0i) > 0 and " r-Cj < iTjCj. Hence, 

n n n 

m19 = E ri 0Oi - 0O ? 01 = ifr7(0 - 01) + 01 
i=l i=l i=l 

n 

n*C,(,- 01) 
*il(i 

ni(i1 
+ 

l 
I 

ni 
_ 

+ 0 

j=4 h 
il E ;j Cj 

*j 
jCj 

j=l j=l 

(A26) 
n 

E 'nTig1(01) nC(, ~ 
< /1 --+01 

T 
Ci(Oi-01) +0 

, '7Tj Cj i= , 1Tj Cj 
j=1 j=1 

n n 

= 'T(Oi - 01) + 01 = Oi - m. 
i=l i=~1 

Step 3: For y < 1, let g2(x) = C(x) X (x - On). Hence, 

ff 2(y - l)[(y - 1)0,, ?AI <1 
g2'(x) =- [(y -)x A3B >O= y< 1. 

Finally, as before we can write 

n 

~* 
~*f} E 

iCi (Oi 
- 

On) i= + 0 I + 

i=l i 1 C T ,Tj C 

j=1 j=1 

n 

> 
n + On = T i ffn ) 

+ 0(A27 ) 
7T7Oj m =l Ef TjCj 

j=1 j=l 

n 

i=ll 
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Now the inequality stems from =17ig2(0i) < 1 ig2(0i) < 0 and 

_J-1 '7j; Cj _j =j- 17* C 

(c) For y # 1, let 

+p - + 012 

The condition (A14) requires s (y) : 0. Of course 

ds + p 12 

dy ( 
-1)2 2 OD 

From equation (A19) we can rewrite 

C(6) = C1 e(y) 
0 - 0l + 8(y)' 

and therefore 

m= ______=__,. _____.v__. (A28) 

i= 7ri Ej4 0, - 01 + ?(y) 

Hence, 

n 
E Ti Oi 

n 
Ti 

n 
+T1 7i Vi jT 

=1 - + Y i= - + _ I _ 0_ + _(_i _0 + dm* 
ds n X 2 

ti-1 oi. - o1 +?J 

(A29) 

which is positive if and only if 

n 
'Ti (9i 

n 
7Tj 6'i 

i=1 (oi -1 + 8)2 i=l i -01 + ? 

V 
ji E 1 i 

-1(oi - o + 6)2 i=l oi - o + 
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Notice that the right-hand side is simply ma and the left-hand side can be 
written as m*O = In=ITi**i, where 7T7* is defined by 

7Ti 

** (Oi 01 + 6)2 

7 nTT 

i1- (oi _Al + e)2 

=~~~~~~O 1 | , ai + l| i a - o+ 
+ 

(A30) 

(0 0i + n) I i 
n 

i 
j=1 oj 

- o + i=l (Oi - o1 + ? 

17Ti i=1 l i 01 + ? 

i=1 (n - 01 + 6)2/ 

Since the last parenthetical expression is independent of i and since 
(Oi - 01 + 6) is increasing in i, it must be the case that vi** > vi for low Ois 
and Tr < <r for high Ois. Therefore, m* < ma, and hence dmI/de > 0. Now 

dV6 dm* dm 
de(y) 

<0. (A31) 

dy dy de dy 

Finally, since Vo is continuous at y = 1 and V0 > 0 for y < 1 and Vo < 0 for 
y > 1, the function Vo must be weakly decreasing for all y. Q.E.D. 

Proof of Proposition 3: (a) is immediate from Lemma 3(b) and ,=LR 

2(c + V0). 

(b) From the proof of Proposition 2(c), we know that 6(y) > 0 and 6(y) -* 0 
as y -* y*, the upper bound (greater than one) implied by the condition 
(A14). Notice that from ,2R =(o- + VO) and the proof of Lemma 3, we 
obtain 

dR =, _2+ V dVo = _ _ + - 2 dm) (A32) 
dy _ +I dy JDEV<Y(y 1) 2 2 OD/\de 

I first show that as 6(y) -* 0 we have (i) Vo - mo -* 01 - mi, and (ii) 
(dm*/de) ((1 - )r). 
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For (i) we can write 

7Ti 

*I =_Ti Ci - = 
0_ 

+ - (O Y) (A33) 
n n '~~~~~7Tj 

j= 1 jC I 0j - 
01 + 6 (y) 

Notice that since 7Ti > 0 for all is, as e(y) -*O, T - 1 and T7r -0 for i # 1, 
and hence Vo = m6 - MO - 01 - mO. 

For (ii) consider the first parenthetical expression in the numerator of 
equation (A29). We can write it as 

n _ _Ti _ i 7T101 n / TiOi Vi=1 (i 01 ?) / ?2 i2 (oi ol + ?) 

2 ~~-~1O1+6Zi 
2 

i=2 (0i 0l + 8) 
2 

By doing the same exercise for all the other terms, we obtain 

dmo 6 

de n 17Ti 02 
IT + ? J? 

{( 77-1o1 + 6 
iE (0~ -01 ? 6)2) (7 

+ 
E 

6 - 0; + ?/) 

+ (2 iO+i - 06 + Oi - ? 

+ 1~O ~+) (A34) 
n 7T 0 -___Ti_Oi_ 2TTi 

{ i=2 0 i-(1+- + )2 1T 1 + ? ) 

l iE 0 0 + E i (( i - 01 +(2 () 01 + 

E~~~~ ~ ~~~ '7T Oi ni 'Ti 

i=2 0i-01 l7T1 

? -IT 1 01 + 
(oi rl + 2 '7T1 +7- 
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To conclude the proof of Proposition 3(b), notice that if mo > oD2 + 01 then, 
from equation (A32), (dm*/de) > 0, and the result in part (i), a continuity 
argument yields the result. 

Similarly, if 

(7D 7 ( y 1)2 2 -D 0 ? 

ITi < -i- 1 D + - (A35) 
2 _ _ _ _2 

where again y* is the upper bound of y implied by the condition (A14), then 

Hence from equation (A32) and the result of part (ii), a continuity argument 
yields the result. 

(c) The result follows from LR = Y(O-2 + V0) and the fact that Vo = m0 - 
MO - 01 - mi. Indeed, if mo > oD2 + 01 by continuity there is a y such that 
IR < 0 for y > j/. Moreover, for a given y, part (a) shows that a mean- 
preserving spread decreases V0. Hence, a negative risk premium can be ob- 
tained for a lower risk aversion coefficient when the distribution is more 
diffused. Q.E.D. 

Proof of Proposition 4: Part (a) is immediate from the fact that o-RsiS a pa- 
rabola with respect to Vo and the fact that Vo is monotonic decreasing in y. 

For part (b) the claims holds if 2 + (he + hD)V6 < 0 for a high enough y. 
From the proof of Proposition 3(c), as y increases, Vo -- 01 - mo. Hence, by 
continuity, it is sufficient to show that 2 + (h2 + h2) (01- _MO) < 0; that is, 

2 ~2(2Joe2_ 
MO- 01 > h2 h 2 , = ). (A36) 

This condition is satisfied if mo > o-D + 01 (the condition in Proposition 3(c)) 
whenever the expression in parentheses is less than one-that is, when 
he> hD. Q.E.D. 
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