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How Does Information Quality
Affect Stock Returns?

PIETRO VERONEST*

ABSTRACT

Using a simple dynamic asset pricing model, this paper investigates the relation-
ship between the precision of public information about economic growth and stock
market returns. After fully characterizing expected returns and conditional vola-
tility, I show that (i) higher precision of signals tends to increase the risk premium,
(i) when signals are imprecise the equity premium is bounded above indepen-
dently of investors’ risk aversion, (iii) return volatility is U-shaped with respect to
investors’ risk aversion, and (iv) the relationship between conditional expected re-
turns and conditional variance is ambiguous.

IN MODERN FINANCIAL MARKETS, investors are flooded with a variety of infor-
mation: corporations’ earnings reports, revisions of macroeconomic indexes,
policymakers’ statements, and political news. These pieces of information
are processed by investors to update their projections of the economy’s fu-
ture growth rate, inflation rate, and interest rate. In turn, these changes in
investors’ expectations affect stock market prices. However, even though it is
clear that asset prices react to new information, several questions arise re-
garding the relationship between the quality of information that investors
receive and asset returns. For example, what kind of effect does a noisy
signal on the “health” of the economy have on stock market prices? If infor-
mation is noisy, is there a risk premium? Or is the risk premium completely
independent of the quality of information investors receive? Also, how does
the precision of the signals affect stock market volatility? If signals are more
precise, does stock market volatility decrease or increase? Finally, can we
infer how good investors’ information is from the behavior of stock market
returns?

In this paper I study a dynamic asset pricing model where I try to answer
the above questions. Specifically, I assume that stock dividends are gener-
ated by a diffusion process whose drift rate is unknown to investors and may
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change at random times. Investors learn about the “true” drift rate through
the observation of realized dividends and another noisy signal, which prox-
ies for the many sources of information I refer to above. The main objective
of the paper is to characterize equilibrium asset returns when different as-
sumptions on the precision of information—that is, the noise of the signal—
are made.

The first surprising result is that more precise signals tend to increase
rather than decrease the equity risk premium—that is, there is no risk pre-
mium for noisy signals. The converse is also surprising: When signals are
noisy, there is an upper bound to the equity premium and this upper bound
is independent of investors’ degree of risk aversion. Hence, the Mehra and
Prescott (1985) equity premium puzzle becomes even more puzzling under
the assumption of noisy information because the actual equity premium can-
not be matched by assuming a high degree of risk aversion.

To understand the intuition behind these results, consider the second re-
sult first. As an extreme and simple case, suppose that dividend realizations
are the only signal investors receive about a constant dividend growth rate.
Typically then, negative dividend innovations imply a downward revision of
expected future dividends and hence of future consumption, because divi-
dends and consumption are highly correlated (in fact, equilibrium market
clearing conditions require them to be equal). Hence, risk-averse investors
increase their hedging demand for the asset to avoid very low levels of con-
sumption in the future. This latter effect tends to increase the stock price,
thereby counterbalancing its tendency to fall due to the initial negative shock
to dividends. When investors are sufficiently risk averse, the positive effect
on the stock price due to investors’ hedging demand for stocks tends to dom-
inate. As a consequence, a drop in current consumption due to a negative
innovation in dividends is associated with a small decrease or even an in-
crease in the stock price. That is, in equilibrium the covariance between
consumption and returns is small or even negative for high levels of risk
aversion. This implies a small or negative risk premium. Indeed, when the
coefficient of risk aversion is sufficiently high a further increase in risk aver-
sion decreases the risk premium because of the indirect effect on the covari-
ance of returns and consumption. This implies an upper bound to the equity
risk premium.

Turning now to the opposite result—that more precise signals increase the
risk premium—consider once again an extreme example. Suppose that in-
vestors know exactly the constant drift rate of the economy: In this case
innovations in dividends do not change investors’ expectations of future div-
idends. Since a higher dividend implies a higher price for given expectations
of future consumption, returns and consumption have positive covariance.
This implies a positive equity risk premium. Moreover, just as in the equity
premium puzzle literature, a higher coefficient of risk aversion increases the
equity risk premium.

The above argument also entails that the precision of signals affects the
equilibrium conditional return volatility. Indeed, I show that when signals
are imprecise, volatility is first decreasing and then increasing in investors’
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degree of risk aversion. However, the effect becomes less and less relevant
as we increase the precision of signals. The intuition stems again from the
hedging demand for the asset: When signals are imprecise, dividend real-
izations have an impact on investors’ hedging demand which tends to de-
crease the volatility of returns compared to the “dividend” volatility. However,
for a sufficiently high risk-aversion coefficient, the indirect effect on the
hedging demand dominates increasing return volatility again—hence the
U-shaped function of volatility with respect to the coefficient of risk aversion.

An implication of the above discussion is that the relationship between the
conditional risk premium and the conditional variance of returns depends on
the precision of signals, and this relationship is generally ambiguous: When
signals are precise, expected excess returns are positively related to their
conditional variance, but the opposite may be true when they are imprecise,
depending on the level of investors’ uncertainty about the true drift of the
economy. This finding helps in explaining the lack of empirical support of a
positive relationship between expected excess returns and their conditional
variance (see, e.g., Campbell et al. (1999) and Scruggs (1998)).

These results also point at an important difference between current divi-
dend realizations and external signals as predictors of future economic per-
formance. Dividend realizations both change investors’ current consumption
sets and modify their expectations: Since asset returns depend on changes in
expectations through changes in investors’ hedging demand for the asset,
this dual role of dividends introduces a special covariance between contem-
poraneous consumption and stock returns, positive or negative depending on
investors’ preferences. In contrast, external signals only affect expectations
and cannot change investors’ current consumption sets. As a consequence,
when we increase the precision of external signals we are also decreasing
the sensitivity of investors’ hedging demand to dividend realizations. When
signals are perfect, there are no variations in hedging demand due to divi-
dend realizations.

As to the methodology of the paper, I find it useful to discretize the pa-
rameter space—that is, the set of possible drifts for the dividend process—to
obtain the dynamics of investors’ beliefs in closed form. This approach en-
ables me to show that a stock’s expected return and volatility depend on a
single quantity that summarizes both investors’ degree of uncertainty on the
true drift of the dividend process and the “relevance” of this uncertainty to
asset pricing. For example, this quantity is zero either when investors have
perfect information or when the price of the asset is independent of the drift
rate of the economy, as in the case where investors have logarithmic utility.
In the latter instance of course uncertainty does not matter for asset pricing.
On the other hand, this quantity is increasing (in absolute value) both with
the “dispersion” of investors’ beliefs around the expected growth rate of div-
idends and the relative difference in asset prices conditional on the various
states.

This paper is most closely related to the literature on learning in financial
markets. Notable works in this area are Williams (1977), Dothan and Feld-
man (1986), Gennotte (1986), Detemple (1986, 1991), Feldman (1989), Bar-
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sky and DeLong (1993), Timmerman (1993), Wang (1993), Detemple and
Murthy (1994), Brennan and Xia (1997), David (1997), Veronesi (1999), and
Zapatero (1998). These papers give various characterizations of portfolio al-
location rules, term structure models, and stock returns when investors learn
about some unknown parameters of the economy. However, none of these
papers investigates the issues that I specifically address here—that is, the
effect of the precision of external signals on the equilibrium stock return
process.

The paper develops as follows: The next section introduces the setup of the
simple economy, Section II describes the dynamics of investors’ beliefs, and
Section III characterizes the stock returns and investors uncertainty. Sec-
tion IV concludes. All proofs are in the Appendix.

I. The Economy

Consider a standard pure-exchange economy (Lucas (1978)) populated by
a continuum of identical investors with isoelastic utility functions,
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where v is the coefficient of relative risk aversion and ¢ the discount rate. I
assume that investors’ opportunity set comprises a risky security, whose
stochastic dividend! is denoted by D, and a bond, whose risk-free rate of
return is r. Dividends grow according to the following process:

dD = GDdt + O'DDdBD,

where B, denotes a standard Brownian motion. I assume that investors do
not observe the drift 6(¢). They only know that it can be any of n possible
values 6; < 6, < --- < 6, and that in any infinitesimal time-interval A there
is probability pA that a new drift will be chosen according to the probability
distribution f = (f3,..., f,)). Since there are no restrictions on n, we can think
of the points in ® = {6,,...,6,} as forming a fine grid on the real interval
[01’0n]~

Even though investors do not observe the true drift, I assume they observe
a noisy signal:

de = 6dt + 0,dB,,

where B, is a standard Brownian motion independent of B,. This form of the
signal is the continuous time analog of the standard “signal equals funda-

1Dividend and output are used interchangeably throughout the paper. Since, in equilibrium,
output also equals consumption, the three words are actually synonyms in this setup.
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mentals plus noise;” that is, e, = 6, + ¢, with &, normally distributed, in a
discrete time model (e.g., see Detemple (1986)). The inverse of the diffusion
parameter,

h, = 1/0,,

reflects the precision of the external signal. I say that investors have precise
signals when £, is relatively high. When p = 0 and /., approaches infinity,
the model gets closer to the standard textbook model where investors know
the constant drift rate 6. Similarly, the precision of the “dividend signal” is

hD = 1/0'D

The main goal of this paper is to characterize asset returns in this economy
with parameter uncertainty and study their behavior for different values of
the precision of the external signal /4,. Equilibrium prices and interest rates
are determined in equilibrium by standard market clearing conditions. Spe-
cifically, if P denotes the price of the risky asset and r the instantaneous
interest rate, then investors choose the fraction of wealth invested in stock,
a(t), and consumption, ¢(¢), in order to solve the maximization problem:

max E [foou(c,s)dsl}"(O)], (1)
c,a 0
subject to
dP + Ddt
dW = W[a(———P——> +(1 - a)rdt] — cdt. (2)

An equilibrium is defined by a vector of processes (c(¢),a(t),P(t),r(¢)) such
that the maximization problem is solved and markets clear. That is, a(¢) = 1
and c(t) = D(¢).

II. The Dynamics of Investors’ Beliefs

Let me denote investors’ information set at time ¢ by F(¢). This contains
all past realizations of dividends and signals. Let 7;(¢) be investors’ beliefs
that the drift rate is 6, at time ¢, conditional on their information F(¢):

m;(t) = Prob(6(¢) = 6, F(¢)). 3)

Also, let me denote the vector of these probabilities by Il = (74,...,7,):
This distribution summarizes investors’ overall information at time ¢. Given
these beliefs, they can compute the expected drift rate at time ¢:

meEE(OIf(t))=21m0i~ (4)
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The following lemma shows that the evolution over time of investors’ be-
liefs 7;(¢) can be described as a diffusion process.

LemMa 1: (a) Suppose that at t = 0 investors’ beliefs are represented by the
prior probability distribution (ir,...,7,). Then, for all i = 1,...,n:

dm; = p(f; = m)dt + m;(6; — m,)(hpdBp + h,dB,) ®)

for t = 0 subject to the initial condition w;(0) = 7; for all i = 1,...,n. In this
equation

_ dD
dB, = h,(de — m,dt)

are standard Brownian motions with respect to the information filtration
F(¢).
(b) For all i = 1,...,n, if m;(0) > O then for every finite t,

Prob(m,(t) > 0) = 1.

Expression 5 is quite intuitive: The stochastic components dB;, and d§e
are the normalized innovation processes of dividend and signal realizations.
Since each of them enters in equation (5) normalized by its own precision
parameter, signals have greater weight in investors’ posterior distribution
than dividends whenever they have higher precision—that is, whenever
h, > hp. The drift p(f; — 7;) is a mean-reverting component that pulls =;
toward f;, which is the relative proportion of time that 6(¢) equals 6, in the
long run. It is intuitive that, other things equal, a higher frequency p of
shifts implies that the conditional distribution (74,...,,) is “closer” to the
unconditional one (fj,...,f,). Hence, the speed of mean reversion in equa-
tion (5) is given by p.2

In order to gather some more intuition about the process of equation (5), it
is useful to rewrite it in terms of the original processes By and B,. This
exercise yields the description of the process d; from the perspective of an
outside observer who knows that during some time interval [¢4,¢5] the true
drift rate 6(¢) is equal to a particular 6,. As the following corollary shows,
we can then gauge how the precision of the signals affects the dispersion of
investors’ beliefs around the true state.

2 Notice also that every solution ((t),...,7,(t)) to equation (5) has the property that for all
t=0, 2", m;(t) = 1. In fact, from Ito’s lemma it can be immediately verified that the quantity
S = X7, is such that dS = 0 for all t. See Liptser and Shiryayev (1977) for details.
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CoroLLARY 1: Suppose that the conditions of Lemma 1 are satisfied and let
the true state be 0(t) = 6, for t € [t,,t5]. Then, for t; < t < ty and for all
i1=1,...,n:

dm, =[p(fi — m) + kmi(6; — my)(0, — my)]dt

6
+m(0; —my)(hpdBp + h.dB,), ©

where
k= h%+ h2.

Expression (6) shows that when 6, is the actual drift rate of the observable
processes dD and de during some period of time [¢,,%,], the drift of d=; has
a second component km; (6, — m,)(0, — m,) which tends to pull 7; toward one
if i = € and toward zero if { # €. In fact, notice that for i = ¢ this second
component equals km,(6, — m,)? > 0, and hence it has the effect of increas-
ing 7, over time. However, as 7, gets closer to one, the term (6, — my)
converges to zero and so do both kw7,(8, — m,)? and the diffusion term in
equation (6). Hence, eventually the first component in the drift p(f, — 7,)
would dominate, preventing 7, from converging to one. Moreover, the speed
at which =7, is attracted to one is given by the constant %k, which in turn
depends on the precision of the signal 4,: Higher precision implies faster
learning. Of course, for i # ¢ the probability 7; tends to converge to zero.

In summary, the specific intertemporal behavior of investors’ beliefs de-
pends on the relative sizes of the parameters p and k. For given p the dis-
tribution II tends to be more concentrated when signals are more precise
(higher %), for given k& the distribution tends to be closer to the stationary
f = (f1,--.,f,) when p is higher. Notice finally that part (b) of Lemma 1
implies that if investors give a positive probability to each state 6, at time
zero, then 7;(t) > 0 for all { = 1,...,n and all ¢. I will assume throughout
that #;(¢) > 0 for all i and ¢.

ITI. Asset Prices, Excess Returns, and Investors’ Uncertainty

In this section I obtain formulas for the equilibrium stock price and in-
terest rate and then study the behavior of stock market returns.

ProrosiTion 1: (a) The equilibrium price function P(I1,D) is

P(I1,D) =D<i77ici>’ (7)
i=1

where C; are positive constants characterized by

_ 1

C, = mE(f ue(D(s),8)D(s)dso(t) = ei>.
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(b) The equilibrium interest rate r is:

r=¢+ymy— 3y(y + oj. (8)

Each constant C; represents the investors’ expectation of future dividends
conditional on the state being 6, today, discounted by the marginal utility of
consumption and normalized to make it independent of the current dividend
and time. Hence, a high C; implies that investors would be willing to pay a
high price relative to the current dividend in state 6,. Since they do not
actually observe the state 6;, they weight each C; by its conditional proba-
bility 7;, thereby obtaining equation (7).

The next proposition characterizes equilibrium stock returns. For nota-
tional convenience, let me denote the total excess returns by

_ dP+Ddt

P rdt. 9)

ProrosiTion 2: The equilibrium excess returns follow the process:
dR = pgdt + (o + hpV,)dBp + V,h,dB,, (10)

where

wr = (0B +V,) (an

2 m;Cy(6; — my)
Vg _ i=1

(12)

VR

m;C;

1

14

Notice both the drift and the volatility of equilibrium stock returns can be
fully characterized by studying the behavior of a single quantity V,. This
task is undertaken below.

A. Investors’ Uncertainty

In this section I discuss the behavior of the quantity V, that characterizes
the stock return process given in equation (10). Let me define the following
adjusted distribution on the state space ® = (6,,...,6,):

m; C;

n
2 m;C;
Jj=1

(13)

m; =
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The distribution IT* = (#7,...,7,) is adjusted to reflect the investors’ mar-
ginal valuation of the risky asset in the various states. I call this distribu-
tion the value-adjusted distribution. Let

my = E*(0| F(t)) = En: ;' 0; (14)
i=1

be the expected growth rate of the economy according to the value-adjusted
distribution. It is immediate to see that

Vg = m; - me (15)

Therefore, V, reflects the relative distance between the true expected growth
rate of the economy and the value-adjusted expected growth rate. Intu-
itively, V, can be considered a summary of both investors’ degree of uncer-
tainty about the true growth rate 0 as well as the impact of this uncertainty
on the investors’ own valuation of the asset. For example, when II is a de-
generate distribution giving probability one to a state 6, or when C; is con-
stant for all ¢, then Vj, is zero. In the first case there is no uncertainty; in the
second case uncertainty does not matter because investors assign the same
value to the asset in every state. However, in general V, is different from
zero; in fact, V, tends to be bigger (in absolute value) either when investors
have more diffuse beliefs or when they value the asset very differently across
states.

Finally, the sign of V, is also important: If V, is positive, then on average
investors deem the asset more valuable in states that have higher growth
rate than m,, whereas when V, is negative they deem the asset more valu-
able in states with a lower growth rate.

The following two lemmas make the above statements formal: The first
characterizes the vector C and the second the quantity V.

LemMa 2: Define the constant

k-3 i

Sio+p+(y—1D0,+3yQ—-vy)op

(16)

and let C(0) be the continuous function on the interval [0,,0,] defined as:

1
(p+p+(y—10+ 3y(Q—vy)ol)(1 - pK)

c(o) = 17

Then, for all i = 1,...,n, we have C; = C(6;).
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The function C(6) is monotonic and convex, and it is decreasing in 6 if and
only if y > 1. That is, investors who are more risk averse than the log-utility
investor assign a lower relative value to the asset in higher growth rate
states. From the definition of C; in Proposition 1 this is not surprising; in
fact, investors discount future dividends using their marginal utility of fu-
ture consumption. Since in equilibrium consumption equals dividends, even
though a higher growth rate implies a higher expectation of future consump-
tion, investors’ discount rates are also higher. It is easy to see that the effect
on the discount rate dominates when y > 1. In other words, when investors
with high coefficients of risk aversion expect low consumption growth, their
hedging demand for assets increases. Since the supply of the risky asset is
fixed while the riskless asset is in zero-net supply, this demand for assets
decreases the interest rate and increases the price of the risky asset relative
to dividends. This implies that C(6) is decreasing. Figure 1 plots the func-
tion C(0) for various values of y.

LemmMa 3: V, can be characterized as follows:

(a) Vo < 0ifandonlyify> 1.V, =0ifand only if y = 1.

(b) Let C(8) be nonconstant and let 11 be a mean-preserving spread of I1.3
Then V, <V, if y > 1 and V, > V, if y_< 1, where “~” denotes a
quantity computed using the distribution I1.

(¢) V, decreases as vy increases.

Part (a) of Lemma 3 shows that if investors have high risk aversion, then
the value-adjusted distribution gives more weight to the low-growth states.
This result stems immediately from the fact that C(#) is decreasing and
convex for vy > 1.

Part (b) of the lemma instead shows that an increase in “uncertainty” on
the growth rate of the economy increases V, in absolute value. The intuition
is straightforward as well: A mean-preserving spread increases the disper-
sion of the distribution Il and hence the relative weight given to the tails of
the distribution. Since the function C(6) is convex, the value-adjusted prob-
ability distribution becomes even more skewed toward the high-value states.
This increases the effect of the value adjustment, thus the absolute distance
between mj and m, increases.

Part (c) relates the measure V, to the preference parameter y. The reason
that it holds can be grasped from Figure 1: When y < 1, an increase in y
makes C(6) less convex and hence the effect of the value adjustment on the
mean growth rate mj decreases. Hence, V, = mj;, — m, decreases as we in-
crease y toward one. When y > 1, an increase in y increases the convexity of

3 A mean-preserving spread of the distribution II is given by II defined by #, = 7, + s; where
for iy <ip <i3y<iy, 8,=-8,=a>0,s,=—s;, =B >0,s; =0 otherwise, and such that
1> 7, > 0and a(f, — 6,) = B(6,, — 6;,). Intuitively, a mean-preserving spread moves probability
mass from the “center” of the distribution toward its “tails” without changing the mean (see,
e.g., Ingersoll (1987)).
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C(0), thereby increasing the effect of the “value adjustment” on the mean
growth rate mj. This increases V, in absolute value. Since V, is negative for
y > 1, this implies that V, decreases further as we increase y.

B. Investors’ Uncertainty and Expected Stock Returns

This section discusses the features of investors’ expected returns ug. I
start with a formal characterization in the following proposition.

ProrosiTiON 3:

(a) If y > 1, then higher uncertainty decreases the risk premium. That is,
a mean-preserving spread on investors’ beliefs Il decreases pp.

(b) If either my, > op + 0, or mw, < 77, where 7, is given in equation (A35)
of the Appendix, the expected excess return g decreases with vy for y
sufficiently high. Hence, up ts bounded above.

(c) If my > op + 0y, there is ¥ such that up < 0 for y > 3. Moreover, a
mean-preserving spread on Il decreases %.

Part (a) of Proposition 3 shows that there is no premium for uncertainty.
Actually, quite the opposite holds. From the characterization of the proba-
bility distribution in Lemma 1 a low precision of signal £, implies that the
posterior distribution I tends to be more diffuse on the space ®. Hence,
Proposition 3(a) implies that when public signals are less precise the ex-
pected excess return is smaller. In other words, when there is “better” in-
formation about the state of the economy, there is also a relatively high risk
premium. As explained in the introduction, the intuitive explanation of this
seemingly paradoxical result stems from the standard result that the risk
premium depends on the covariance of consumption growth and stock re-
turns; that is,

dc
wr = v(ocg +V,)=v X Cov <dR, ?> (18)

When the external signal is very precise, the covariance between consump-
tion and stock returns is higher than in the case where signals are less
precise. In fact, in the latter case a negative innovation in dividends has the
direct effect of decreasing the price of the stock and the indirect effect of
increasing investors’ hedging demand for the asset because they now expect
lower consumption in the future. This indirect positive effect on the price
partly dampens the negative direct effect due to the decrease in dividends.
However, as we increase the precision of the signal A, investors’ hedging
demand is less and less affected by dividend realizations because investors’
expectations depend more and more on the signal. Since in equilibrium div-
idends equal consumption, the above discussion entails that as we increase
the precision of external signals the covariance of returns and consumption
increases and so does the risk premium.
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Part (b) of this proposition shows that when either investors’ expected
growth rate is not too low or 7, is not too high, there is an upper bound to
the risk premium. The intuition for this result is related to that of part (a):
As usual, for given positive covariance of returns and consumption growth,
higher risk aversion implies a higher risk premium. When signals are not
precise though, an increase in risk aversion also implies a bigger impact of
dividend realizations on investors’ hedging demand. As we saw above, this
decreases the covariance itself. Moreover, the second effect dominates for
very high vy so that uj; decreases as y increases. I should point out that the
conditions of Proposition 3(b) are generally satisfied when signals are not
precise and n is large, so that the distribution Il is diffuse. In fact, for typical
parameter values of ¢, p, and o, 7, is extremely high, well above 0.85.

Finally, part (c) shows that when investors’ expected growth rate is not too
low, the risk premium turns negative when investors are sufficiently risk
averse. Once again, this result stems from the fact that high expected future
dividends tend to decrease the covariance between current returns and con-
sumption growth. For sufficiently high y this covariance becomes negative
(see Campbell (1999) for a discussion of a related point).

Figure 2, Panel A, plots up against the standard deviation of investors’
beliefs o, = N >t 7 (6; — my)? for various coefficients of risk aversion.4
As o, increases, up decreases and becomes negative for a high y. Simi-
larly, Figure 2, Panel B, plots u against the coefficient of risk aversion y for
oy = 0.11%. To better understand the effect of changing uncertainty over
time, Figure 3, Panel A, plots wj for various values of y resulting from one
simulation of dividends and posterior distributions. We can see that a high
v does not imply a high pp, which at times can turn negative. From Fig-
ure 3, Panel B, we also notice that wy decreases when o, increases.

C. Investors’ Uncertainty and the Conditional Volatility of Stock Returns

From the equilibrium process for returns (equation (10)) it is immediately
evident that the quantity V, characterizes return volatility as well. In fact,

o = ap + V4[2 + (h + hp) V4] (19)

The following proposition then holds.
ProprosiTiON 4:

(a) og is a U-shaped function of y with o = op for v = 1. Moreover, a
mean-preserving spread on Il increases oy if o > op. The effect is
ambiguous if o < op.

(b) Under the conditions of Proposition 3(c), if h, > hp then op > op for
a sufficiently high coefficient of risk aversion.

* The following parameters are used (in monthly units): o, = 1.5%, p = 1.67% , 0, = o (no
external signal), and o, = 0.11% for Figure 2, Panel B.
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The intuition behind the results in Proposition 4 is the same as the one for
the risk premium. For logarithmic investors, uncertainty (and hence the
precision of signals) does not matter because they value the asset the same
independently of the state. Hence V, = 0 and oz = 0p. When there is un-
certainty about the true drift (Il nondegenerate), if y > 1 any positive in-
novation in dividends increases the price but decreases investors’ hedging
demand due to the increase in investors’ expectations of future consumption.
Hence, the effect on the price of dividend realizations is not as strong and
return volatility decreases. However, for very high levels of risk aversion the
effect on the hedging demand outweighs the direct effect on the price, thereby
increasing volatility again. In contrast, for y < 1 a positive realization of
dividends increases investors’ demand for the asset (substitution effects dom-
inate), thereby further increasing the price of the stock. Hence o > op if
y < 1.

D. The Risk Premium and the Conditional Variance of Returns

From the results about risk premium and return volatility, it is clear that
the relationship between return volatility and expected returns is ambigu-
ous and depends on the degree of investors’ uncertainty. This statement can
be made precise by noticing that from equations (11) and (19) we can write

MR = ')’0'1% —yYVe[1 + (hf + h%)Vo]- (20)

It is apparent then that the relationship between the conditional risk pre-
mium and the conditional variance of returns is linear but investors’ uncer-
tainty biases this relationship through V, in an ambiguous way. In fact, the
second term in equation (20) can be positive or negative depending on the
magnitude of V,. Specifically, for log-utility or when signals are very precise,
V, is approximately zero and hence a linear positive relationship results.
In contrast, when y > 1 and signals are not precise, the second term
in equation (20) is positive for —1/(h2 + h3) < V, < 0 and negative for V, <
—1/(h% + h%). Since the magnitude of V, changes over time due to investors’
fluctuating level of uncertainty, equation (20) implies that there is no pre-
cise relationship between expected excess returns and conditional volatility.
Indeed, the empirical finance literature has long documented that the evi-
dence for a positive relationship between expected returns and conditional
return variance is very weak at best (e.g., see Campbell et al. (1999) and
Scruggs (1998)).

IV. Conclusions

This paper shows that the relationship between the precision of public
information about economic growth and the performance of the stock market
is nontrivial. In a standard Lucas economy where the growth rate of output
is unknown but where investors receive signals about it, I obtain results on
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equity premium and return volatility that can be deemed counterintuitive at
first: (i) More precise signals on the true state of the economy—that is,
better information—tend to increase the equity premium. Therefore, poor
information does not demand a risk premium. (ii) If information is impre-
cise, then an increase in the risk aversion coefficient does not necessarily
increase the equity risk premium. In fact, there is an upper bound to the
equity risk premium. Moreover, higher uncertainty (i.e., poorer signals) im-
plies that the upper bound is achieved for a lower coefficient of risk aversion
v. (iii) When signals are imprecise, return volatility is U-shaped with re-
spect to investors’ coefficient of risk aversion. (iv) The relationship between
expected returns and return volatility is ambiguous and depends on inves-
tors’ level of uncertainty.

The channel through which the precision of public information affects stock
returns is its influence on the equilibrium covariance between current con-
sumption and returns. In fact, there is a qualitative difference between div-
idends and “other statistics” as signals of future economic performance: Though
“other statistics” affect only investors’ expectations, dividend realizations also
affect investors’ consumption possibilities. Hence, the implied covariance be-
tween consumption and return is modified as we change the precision of
external signals.

A few final remarks are in order. First, the model implies that when the
external signals are not precise the conditional expected excess return may
become negative when the coefficient of risk aversion is high. This occurs
when investors’ uncertainty increases. The same factor also decreases the
dividend yield, thereby generating a positive relation between dividend yield
and expected returns. A very low dividend yield may be associated with a
negative risk premium (e.g., see Lamont (1998)).

Second, the empirical literature has had a hard time determining the re-
lationship between expected returns and their conditional variance (see, e.g.,
Campbell et al. (1999) and Scruggs (1998)). Result (iv) justifies this finding:
Investors’ fluctuating uncertainty over time about the true growth rate of
the economy makes this relationship ambiguous because it introduces a bias
that is at times positive (for low level of uncertainty) and at times negative
(for high level of uncertainty).

Third, the model developed in this paper assumes that investors have a
power utility function. This choice enables me to obtain a simple closed-form
solution for asset prices but it imposes also a specific relationship between
investors’ degree of relative risk aversion and their elasticity of intertempo-
ral substitution, the latter being the reciprocal of the former. This strict
relationship makes it more difficult to interpret exactly the comparative stat-
ics results obtained in this paper. Nonetheless, the basic intuition developed
in the model is likely to remain even under a more general utility function.
In fact, an increase in risk aversion would still imply that investors’ hedging
demand for assets increases after bad news in dividends, thereby counter-
balancing the negative pressure in prices due to the negative dividend news.
With a power utility function this effect is strong because a higher risk aver-
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sion implies a lower elasticity of intertemporal substitution, which in turn
also increases the demand for the assets after negative shocks in dividends.
In fact, negative dividend innovations signal lower future consumption, which
in turn implies higher savings to smooth out consumption. The exact bal-
ance between the two effects can only be assessed by using a more general
utility function, such as Epstein and Zin (1989); this investigation is an
interesting topic for future research.

Finally, this paper investigates a particular type of quality of information:
information about economic growth. There are other types of information
that are certainly relevant and that are also worth investigating. These may
include information about future volatilities or correlations for example. The
effect of “information quality” on these variables may have different impli-
cations on stock returns than the one discussed here. Also, it would be in-
teresting to study how information quality about different firms’ growth
prospects affects their stock returns. The relationship between the cross sec-
tion of returns and investors’ information has been already addressed in the
Bayesian CAPM literature (see, e.g., Barry and Brown (1985)). However, a
model of intertemporal learning is still missing. One of the effects that we
can reasonably expect is that equilibrium “betas” would tend to change over
time as uncertainty fluctuates and investors’ change their hedging demand
for stocks.

Appendix

Proof of Lemma 1: (a) This is a slight generalization to the vector case of
Theorem 9.1 in Liptser and Shiryayev (1977, p. 333). Let X(¢) be an
N-dimensional Ito process described by

dX = udt + 3dW,
where W(t) is an M-dimensional Brownian motion. It is assumed that the

N-dimensional vector u(t) follows an n state continuous-time Markov chain,
where

—2 Ay A Mg e Ay
i1
Aoy — > Ay, Ags e Agy
j72
A= Az1 Asz —D A3z e Ag,
j#3
An1 Ans Ang e T2 Ay

J#n
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is the infinitesimal matrix. Notice that for all i = 1,...,n, A; = —X;.; A;
(e.g., see Karlin and Taylor (1975), p. 151). Both u and 3, can be functions of
X. Then, the proposition of Theorem 9.1 in Liptser and Shiryayev becomes:

THEOREM: For given prior distribution (7rq,...,7,) on (ft1,...,&,), Under some
technical conditions (see Liptser and Shiryayev (1977)), the posterior probability
m;(¢) = Prob(pu(t) = p;| F(¢))

satisfies the system of stochastic differential equations
dm(t) = > Aym(t)dt +m;(t)(p; — B) (33) V2 dW (A1)
=1

under the condition m;(0) = 7, where

n
&= um;
j=1

dW = (33')V2(dX — fdt).

The proof of this claim is identical to that of Liptser and Shiryayev’s Theo-
rem 9.1 after the obvious changes are made. Similarly, Liptser and Shiryayev’s
Theorem 9.2 shows that under some technical conditions equation (Al) ad-
mits a unique nonnegative strong solution.

Finally, in order to obtain equation (5), we define X = (D,e)’, u; = (6,D,9,)’,
21 = Dop, 39y =0, 2;; =0 fori # j, W = (Bp,B,)’, A; = pf; for i #j, and
Aii = —2jsi Ay = —P i f; = pfi — p- We then obtain

L 1 1
j=1 O'DD O'DD

11
+ (6, — my) ;—[_ (de — mgdt)]} (A2)

= p(f, — m)dt + 7,(6; — my)(hpdBp, + h,dB,).

Finally, using the fact that dB,, = dBj, + hp(6(t) — m,)dt and dB, = dB, +
h,(0(t) — mg,)dt, substitution in the above formulas yields equation (6).
(b) See Lemma 9.3 in Liptser and Shiryayev (1977, p. 342). Q.E.D.

Proof of Proposition 1: (a) From the first-order conditions on investors’
portfolio problem we obtain the standard formula

P(t)p(t) = E, [ f wp(s)D(s)ds}, (A3)
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where p(t) = u.(c(t),t) = e ®'c(t)”” is the stochastic discount factor.
In a Lucas economy, in equilibrium the market for consumption goods must
clear so that for every r we must have c(7) = D(7). Hence, we can deter-
mine the asset pricing formula by substituting this equilibrium condition to
obtain

PO _ L[ (7 s (PO
DO —E[ft e ¢ (D(t)) dsl]—"(t)]. (A4)

Consider first the following conditional expectation:

0 1-y
Vi(t,0,) =EU e_‘ﬁ(“'_‘)(g;:))) dle(t)=0,~]. (A5)

From the assumption on the dividend process we have

D(s)
D(¢)

s 1
= exp(f O(w)du = 5 op(s =) + op(Bp(s) — BD(t))> (A6)

for s > t. As usual, the process 6(¢) is assumed right-continuous; that is,
lim,_,,0(¢ + A) = 6(¢). Hence, we can consider an infinitesimal time interval
A such that if 0(¢) = 0; there is probability o(A) that a shift occurs before
time ¢ + A (we take the limit as A — 0 below). We can then write

oo 1-vy
V(t,0,~)=E[f e*¢<s—”<§%2> ds!ﬁ(f)=0i]

t+A D(S) 1-y
= —ps—t) [ 7 = 0.
E[fz e (D(t)) ds|O(t) 0,] (A7)

o D(s)\'™
—p(s—t) [ 7 —f.
+E{ft+Ae (D(t)) ds|6(t) 0L].

Hence, since 6(¢) = 6, during the infinitesimal interval A, we immediately
find:

t+A D 1-y t+A 08 _ 1
E[f e ~Ps—t) (ﬂ) ds!G(t) — 0i] =f PLAC P P e é . (A8)
t ¢

D(t) i
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where 6, = —¢ + (1 — )0, — 252y (1 — v). Similarly, since conditional on 0(¢) =
0; during the infinitesimal interval A the random variables D (¢ + A)/D(¢) and
D(s)/D(¢ + A) are independent, the second expectation can be rewritten as

o D(s)\'7”
_¢(S_t) = .
E[LAe <D(t)) ds|0(t) ol}

1—y 0 1-y
=E[e—¢A<—————Dg;)A)> xftAe—W—(“A”(al:(—j)B) dsw(t)zﬁ}

o D(s) \'77
—p(s—@+A) [ 7 = 0.
XE{fHAe t <D(t+A)> ds|o(t) 01}

A % D 1—y
=% X E[f e Ps=+A) (—(fl—> ds|0(t) = GL}
t

(A9)

+A D@ +A)

; © D(s) \'77
oA _ . —ps | L = f.
e XKI %A,JA)E(£+Ae <D(t+A)) ds|0(t + A) 0,)

¥ s D) N B
+;A”AE<LAQ " <D(t+A)> ds'a(”A)—é’jﬂ

= o9 x [(1 - ZAUA>V(15 +A,6) + S A, AV(E + A,oj)].

i J#i

fi

Using a Taylor expansion, we can write V(¢ + A,60,) = V(¢,6,) + V'(¢,0,)A +
o(A). Hence, overall we obtain

6. A
(R 1 R
Vi(t,0,) = ‘ 7t et (V(t;ﬁi) +VI(#60)A = X A;V(E0)A + M;AV(t;%)>-

J#i J#i

i

Rearranging and dividing by A, we have

1—efha eld — 1 5
V(t;a,.)< >: - +e9iA<V’(t;0i) - > A;VI(:6) +2AUV(t;0j)>.
A 0; A i JEi

(A10)
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By taking the limit as A — 0 and rearranging terms, we obtain a first-order,
linear differential equation:

V(t;6,) = (2 Ay~ éi>V<t;e,~> - S AgVi0) - 1 (A11)

Let V(¢) = (V(t;0,),...,V(¢;6,)) and A = —A — (1 — y)diag(®) + (¢ + 3y(1 —
v)o3)I, so that

Vi(t) =AV(¢) —1,.

We now realize that, by definition, V(¢;6,) is time homogeneous for all i,
which implies that V'(¢;6,) = 0 for all i. Hence, the solution is easily ob-
tained by solving 0,, = AV (¢) — 1,,. That is,

Vit)=C=A"1,. (A12)

Since by definition P(¢)/D(t) = >}, m; V(t,0;), we obtain the claim.
Finally, for the specification A;; = pf; for j # i, it is easy to see from AC =
1, that for every i, we have

1 n
(qS +p+(y—1)0i+§(1—'y)yag>ci=1+p21ijj. (A13)
j=
Hence, since to have positive prices we need C; > 0 for all is, the following
condition must always be satisfied: For all i = 1,...,n,
¢+p+(y—16+ 31— y)yop>0. (A14)

Lemma 2 shows that under a slightly stricter condition than that given in
equation (Al14), the system of equations (A13) has a unique solution.

(b) Similar to case (a), it is possible to express the first-order conditions in
differential form so that for every asset we have

0 = pDdt + E[d(pP)| F(t)]. (A15)
The risk-free asset can be thought of as an asset yielding an instantaneous

dividend D = rB, where the price of the bond is always equal to 1. Hence, we
obtain
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It is easy to see that

Et[df] = —<¢+ym0—%y(y+ 1)0'D2>dt. (A16)

Q.E.D.
Proof of Proposition 2: Notice first that from the definition of dBp, I can

rewrite the dividend process as dD/D = m,dt + o, dB),. Applying Ito’s lemma
to equation (7), we obtain

i=1 i=1 i=1

(A17)

= Pupdt + PopdBp + D S, C;m,(0; — my)(hpdBp + h,dB,)
i=1

with

D 2 D
pp=|my+—=p > Ci(f;—m)+ = X Cimi(0;, — my) |.
P 5 Pi=1

Since from equation (7) D = P/(27-; C;m;), the diffusion terms in equation
(10) follow immediately. Next, for all ¢ = 1,...,n, multiply both the right-
and left-hand sides of equation (A13) by 7; and then sum acrossi =1,...,n
to obtain the equality

1 n n n n
<¢+ 5(1_7’)70'1%>2 mCi+p X mCi+(y—1)2m6,C,=1+p > f;C,.
i=1 i=1 i=1 j=1
Manipulation of this expression yields
n 1 9 n n
i=1 i=1 i=1

Substituting this equality into wp along with D/P = 1/(Z}-, C;m;) yields

1 R ;
/«Lp=¢+§(1—v)wp+v



830 The Journal of Finance

Finally, using equation (8) to write ¢ + (1 — y)yoa = r — ym, + yop, we
obtain

D ZCﬂTi(ai —my)
E(dR) = pp=pup+ 5 —r=y|op+ — = y(o2 +V,). (A18)

> Cimr
i=1

Q.E.D.
Proof of Lemma 2: 1 prove the following claims:

(@) Let 6, = (¢ + (y — 1)0, + :(1 — y)yop) and K = 3, f:/(6; + p). If
K # 1/p, then the constants

1

Ci = -
(6; + p)(1 — pK)
are the unique solution to the system of equations (A13).
(b) C; >0foralli=1,...,nif and only if K < 1/p and 6, + p > 0 for all
i=1,...,n.
(¢) A sufficient condition for K < 1/p and éi +p>0foralli=1,...,nis
the following: For all i = 1,...,n,

(A19)

¢+ (y—1)0 + 31— y)yop > 0. (A20)

To prove claim (a) I first solve for the constants C;,i = 1,...,n, that solve the
system of equations (A13). From equation (A13), we can rewrite C; as

1 n
Cr= —— + 2 <2fjcj>. (A21)
b \j=1

=0i+P 6; +

Multiply each side by f; and sum across i = 1,...,n to obtain

She-3 fipﬂ)[i KZ@,) (A22)

S0 +p

Taking the second term on the right-hand side to the left-hand side, and
using the definition of K and the assumption that K # 1/p, we obtain

<Ez§ )[1 pK]= (A23)

Hence, we have X7 f;C; = K/(1 — pK). By substituting this quantity back
into the right- hand side of equation (A21) we obtain C; as in equation (A19).
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For claim (b), suppose that K < 1/p and él- +p>0foralli=1,...,n; then
equation (A19) implies that C; > 0 for all i. Conversely, suppose that C; > 0
for all i. From equation (A14) we see that this implies 6, + p > 0 for all i.
Given this result, from equation (A19) we have that C; > 0 for all { also
implies K < 1/p.

To prove claim (c), we see that condition (A20) clearly implies 6, + p > 0
for all i = 1,...,n. Moreover, from the definition of K we have

fi n fi 1 1
< A = Y <
itp i min {6}+p  min {}+p p
i=1,...,n i=1,...,n

>

K=73
i=1

the last inequality stems from mini=1,...,n{éi} > 0 because of condition
(A20). Q.E.D.

Proof of Lemma 3: (a) For given vector (7q,...,7,), 2?:1 m;C; is a con-
stant. Moreover, because for y > 1, C; is monotonically strictly decreasing as
i increases from 1 to n, we must have C;/X"_; 7; C; monotonically decreasing
with i. Since we must also have C,/X} m,C; > 1> C,/3/ 1 7;C,, it follows
that there is a k such that #; = (C;/2};m,C;))m; > 7, for i < k and =} =
(C;/Zj—17;C))m; < m; for i = k. Since 6; < 6, < --- < 6,, the average of the
;s using the distribution (#7,...,7,) must be smaller than using the distri-
bution (74, ...,7,) because the former gives more weight to low 6;s and less
to high 6;s than the latter distribution; that is, mj < m,. Hence, V, =
my — my < 0 if y > 1. The reverse argument holds for y < 1, in which case
C; is monotonically strictly increasing in i.

(b) Consider a mean-preserving spread s; on the distribution IT (see
footnote 2) and denote the new distribution by II. We want to show that
my < mpyify > 1and my > mj if y < 1, where i}, is the mean growth rate
computed using the probability II.

Step 1: For y > 1, define the function g,(x) = C(x) X (x — 6,) on the real
interval [6;,6, ], where C(x) is given by

1

W = T r AR

(A24)

where, from equation (17),A=¢ +p + 2y(1 — y)o2 and B = (1 — pK). I first
show that g,(x) is a concave function of x € [6,,6,] . By differentiating g,
twice with respect to x, we obtain

2(y = Dy — 16, + A]
[(y—1x+A]’B

gi(x) = — <0ey>1 (A25)

because from condition (A14) we have [(y — 1)x + A] > 0 for all x € [6,,6,,].
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Step 2: Since the expected value of a convex (concave) function increases
(decreases) after a mean-preserving spread has been performed on the under-
lying probability distribution (see, e.g., Ingersoll (1987, p. 116)), we have
2 mg1(0;) > 21 7;81(6;) > 0and X7, C; < X7, 7 C;. Hence,

My =2 7 0;= 2 70— 0, + 0; = Eﬁ:‘(o 01) + 0,

$ M=o 2, ig1(0) '
=2~ th=—— 0,
o 2 77'J'Cj 2 77'JCJ
a a (A26)
moar; Ci(6; — 6y)
—_— +

n = n
> DR
=~ £

0, — 01) + 0, = EWO—mw

i=

I
s
S

Step 3: For v < 1, let go(x) = C(x) X (x — 6,). Hence,

_2(y = Dl(y — 1)6, + Al
[(y—1x+A]’B

g5(x) = >0 y<l.

Finally, as before we can write

+6, (a27)
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Now the 1nequahty stems from X7 7;85(0,) < Xi,#:82(0,) < 0 and

2jamC < 2T iC;
(c) For y # 1, let

+ 1
¢ p—""ya'Dz-l-Ol.

eV =""7"35

The condition (A14) requires £(y) # 0. Of course

d + 1
= =—¢—p2——0'D2<0.
dy (y—1* 2

From equation (A19) we can rewrite

N e(y)
CO) =6 0—0,+e(y)
and therefore
= - 7;0;
*_glwic,-ei ge 0 t+e(y)
mo = n = n .y .
s P

(A28)

- —m;6; < ; < 7, 0;
+
* (2:1(9_91'*'8) )(L—Elei—01+8> (iglei_01+8
dmy

i:§:1 (6; — 6, +8)2)

which is positive if and only if

- 7; 6; - 7; 6;

':1(0i_91+8)2 <i:10i_01+8

n
i

M:

(0—01+8)2 i=210,-—01+8

’

(A29)
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Notice that the right-hand side is simply my and the left-hand side can be

written as mj* = X, 7;*60;, where 7" is defined by
i
(B —01+8)2
1221 (0 - 01 + 8)2
;5 ™
1 0—01+s ,210,—01+8
= (A30)
(6, — 0, +¢) i i T;
510, - 01+s 1(0, — 0, + ¢)®

Since the last parenthetical expression is independent of i and since
(6; — 0, + ¢) is increasing in i, it must be the case that =" > = for low 6;s
and 7" < 7] for high 6;s. Therefore, mj* < mj, and hence dmj/de > 0. Now

dVv, dmy dmyd
aVy _ dmy _ dmy dely) _ (A31)
dy dy de dvy

Finally, since V, is continuous at y = 1 and V, > 0 for y < 1 and V, < 0 for
v > 1, the function V, must be weakly decreasing for all y. Q.E.D.

Proof of Proposition 3: (a) is immediate from Lemma 3(b) and up =
y(ap + V).

(b) From the proof of Proposition 2(c), we know that e(y) > 0 and &(y) » 0
as y — v~ the upper bound (greater than one) implied by the condition
(A14). Notice that from up = y(c2 + V,) and the proof of Lemma 3, we
obtain

dur dv, ( ¢+p 1 )(dm’é)
=g+ V+y—=024+V, —y| —— + =2 . (A32
y Jp 0T Y dy Jp 6~ Y (y — 1)2 9 Op de ( )

I first show that as e(y) — 0 we have (i) V, = mj, — my - 6, — m,, and (ii)
(dmy/de) — (1 — 7)) /7y).
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For (i) we can write

7;

iCi 01_0 +
., G L B 1rely) (A33)

n n o
j=

J
Jj=1 0' — 0+ e(y)

Notice that since 7; > 0 for all is, as e(y) > 0,77 > 1 and = — 0 for i # 1,
and hence V, = mj —my — 0, — m,.

For (ii) consider the first parenthetical expression in the numerator of
equation (A29). We can write it as

77101 —;0;
= E —_ 5
8 i=2 0 01+8)
1 G — 0,
) <—77'101 + g2 E ———”—2>
e

i—2 (6, —0; + &)

N
1=
.
=
L
K
+ =
[}
SN
[\
N——
|

By doing the same exercise for all the other terms, we obtain

1
€

de 2
+
<7Tl 8,220 01+s>
n — 7.0; n
X _ + 2 P
{< 7T101 € i=2 (01:_01"‘8)2)( g 01+8>
0, + 2__9‘___ i_______
TATE &g &6, — 0, + 0)2

= (A34)

2
+
<71 8,220 01+s>

n

x{—wlolz—l—— é—L(mﬂz _ )

i=2 6 01 + & i 0L 01 + 8)2

+7"'12 i

;29—91"‘8 i=2(9 91+ )2< i—20; =0, t &
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To conclude the proof of Proposition 3(b), notice that if m, > o3 + 6, then,
from equation (A32), (dmy/de) > 0, and the result in part (i), a continuity
argument yields the result.

Similarly, if

y -1 2
771 < 'ﬁ'l = 5 (A35)
2 * ¢ +p 1 2
opt+vy (7*—1)2+§UD

where again y* is the upper bound of y implied by the condition (A14), then

¢+p 1 )1—771
2 = 52 < 0.
. y((«y*—m 2P)

Hence from equation (A32) and the result of part (ii), a continuity argument
yields the result.

(c) The result follows from uy = y (03 + V,) and the fact that V, = m}, —
mg, — 0; — my. Indeed, if my, > o + 6, by continuity there is a ¥ such that
#r < 0 for y > y. Moreover, for a given v, part (a) shows that a mean-
preserving spread decreases V,. Hence, a negative risk premium can be ob-
tained for a lower risk aversion coefficient when the distribution is more
diffused. Q.E.D.

Proof of Proposition 4: Part (a) is immediate from the fact that ¢ is a pa-
rabola with respect to V, and the fact that V, is monotonic decreasing in 7.

For part (b) the claims holds if 2 + (k2 + h%)V, < 0 for a high enough 7.
From the proof of Proposition 3(c), as y increases, V, — 6; — m,. Hence, by
continuity, it is sufficient to show that 2 + (hZ + h%)(6; — m,) < 0; that is,

2 9 202
m9‘01>m=0b % |- (A36)

0'1:2, + cre2

This condition is satisfied if m, > o2 + 6, (the condition in Proposition 3(c))
whenever the expression in parentheses is less than one—that is, when
h? > h%. QE.D.
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