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Nash Equilibrium (Continued)
Please read the remainder of Chapter 4, The Art of Strategy, starting from "Games with Infinitely Many Strategies" on page 124.
Infinitely Many Strategies 
Suppose each player’s strategies are the interval [ 0, 10 ]; each one chooses a number between 0 and 10. Then we can’t depict the game as a matrix with its cells showing the payoffs from each pair of strategies. But if each player has a unique best response to the other’s strategy, their reaction functions can be plotted as curves.
 
Reaction Curves

 
Since a Nash equilibrium is a pair of strategies such that each is a best response to the other, it must be the intersection of the two reaction curves. 
 
Nash Equilibrium: A Formal Definition
John Nash defined this concept of equilibrium and proved that most regular games possess such an equilibrium. So if we accept a Nash equilibrium as a metaphor for how a game will be played by rational individuals, it provides us with a theory that can be applied to many situations.
A best reply (or response) refers to a strategy that is best given the strategy of the other player. A dominant strategy refers to a strategy that is best regardless of the strategy of the other player. A play of the game where each strategy is a best reply to the other is a Nash equilibrium.
A game with two players, A and B, is defined as (XA,XB,uA,uB) where Xi is i’s strategy set and ui is i’s utility function. A typical strategy of player i is xi in Xi. A pair of strategies (xA,xB) is called a strategy profile. The utility function of each player is defined over all strategy profiles. Thus uA(xA,xB) is A’s utility when A chooses xAand B chooses xB. A strategy profile (xA∗,xB∗) is a Nash equilibrium if uA(xA∗,xB∗)≥uA(xA,xB∗) for all xA in XA (xA∗ is A’s best reply to xB∗) and uB(xA∗,xB∗)≥uB(xA∗,xB) for all xB in XB (xB∗ is B’s best reply to xA∗).
 Nash proved that in every game (satisfying some regularity properties) there exists at least one equilibrium.
Proof: The proof uses advanced mathematics ( a fixed point theorem) and we will not attempt it, but Nash provided a short proof. 
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In the movie, “A Beautiful Mind”, Russell Crowe plays Nash and here is a clip that seems to portray his eureka moment, and an attempt at explaining the notion of a Nash equilibrium.
Before you view the clip, recall that in the theory of perfect competition, each firm seeking to maximize its own profit also serves the social good (social surplus is maximized) -- this is Adam Smith’s theory. But in the prisoner’s dilemma, and in many other games, individual rationality does not serve the social good.
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This follows from the arguments used in a forthcoming paper. It is
proved by constructing an “abstract” mapping cylinder of X and tran-
scribing into algebraic terms the proof of the analogous theorem on CW-
complexes.

* This note arose from consultations during the tenure of a John Simon Guggenheim
Memorial Fellowship by MacLane.

* Whitehead, J. H. C., “Combinatorial Homotopy I and I1,” Bull. A.M.S., 55,
214-245 and 453-496 (1949). We refer to these papers as CH I and CH I1, respectively.

By a complex we shall mean a connected CW complex, as defined in §5 of CH I
We do not restrict ourselves to finite complexes. A fixed 0-cell ¢* ¢ K° will be the base
point for all the homotopy groups in K.

4 MacLane, S., “Cohomology Theory in Abstract Groups IIL” Anun. Math., 50,
736-761 (1949), referred to as CT IIL.

& An (unpublished) result like Theorem 1 for the homotopy type was obtained prior
to these results by J. A. Zilber.

¢ CT III uses in place of equation (2.4) the stronger hypothesis that A3 contains the
center of A, but all the relevant developments there apply under the weaker assumption
(24).

7 Eilenberg, S., and MacLane, S., “Cohomology Theory in Abstract Groups IL,”
Ann. Math., 48, 326-341 (1947).

8 Eilenberg, S., and MacLane, S., “Determination of the Second Homology . . . by
Means of Homotopy Invariants,” these PROCEEDINGS, 32, 277-280 (1946).

% Blakers, A. L., “Some Relations Between Homology and Homotopy Groups,”
Ann. Math., 49, 428-461 (1948), §12.

% The hypothesis of Theorem C, requiring that »~! (1) not be cyclic, can be readily
realized by suitable choice of the free group X, but this hypothesis is not needed here
(cf.9).

11 Eilenberg, S., and MacLane, S., “Homology of Spaces with Operators 11,” Trans.
A.MLS., 65, 49-99 (1949); referred to as HSO I1.

12 C(K) here is the C(K) of CH II. Note that K exists and is a CJ¥ complex by
(N) of p. 231 of CH Iand that p~*K" = K", where p is the projection p:K — K.

13 Whitehead, J. H. C., “Simple Homotopy Types.” If W = 1, Theorem 5 follows
from (17:3) on p. 155 of S. Lefschetz, Algebraic Topology, (New York, 1942) and argu-
ments in §6 of J. H. C. Whitehead, “On Simply Connected 4-Dimensional Polyhedra”
(Comm. Math. Helv., 22, 48-92 (1949)). However this proof cannot be generalized to
the case W # 1.

{QUILIBRIUM POINTS IN N-PERSON GAMES
By JonN F. Nash, Jr.*

PRINCETON UNIVERSITY
Communicated by S. Lefschetz, November 16, 1949

One may define a concept of an 7-person game in which each player has
a finite set of pure strategies and in which a definite set of payments to the
n players corresponds to each n-tuple of pure strategics, one strategy
being taken for cach player. For mixed strategies, which are probability
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distributions over the pure strategies, the pay-off functions are the expecta-
tions of the players, thus becoming polylinear forms in the probabilities
with which the various players play their various pure strategies.

Any n-tuple of strategies, one for each player, may be regarded as a
point in the product space obtained by multiplying the n strategy spaces
of the players. One such n-tuple counters another if the strategy of each
player in the countering n-tuple yields the highest obtainable expectation
for its player against the n — 1 strategies of the other players in the
countered n-tuple. A self-countering n-tuple is called an equilibrium point.

The correspondence of each n-tuple with its set of countering n-tuples
gives a one-to-many mapping of the product space into itself. From the
definition of countering we see that the set of countering points of a point
is convex. By using the continuity of the pay-off functions we see that the
graph of the mapping is closed. The closedness is equivalent to saying:
i Py Py .. and Qy, Qs ..., Qy . .. are sequences of points in the product
space where Q, — Q, P, — P and Q, counters P, then Q counters P.

Since the graph is closed and since the image of each point under the
mapping is convex, we infer from Kakutani's theorem! that the mapping
has a fixed point (i.e., point contained in its image). Hence there is an
equilibrium point.

In the two-person zero-sum case the “main theorem”? and the existence
of an equilibrium point are equivalent. In this case any two equilibrium
points lead to the same expectations for the players, but this need not occur
in general.

* The author is indebted to Dr. David Gale for suggesting the use of Kakutani’s
theorem to simplify the proof and to the A. E. C. for financial support.

* Kakutani, S., Duke Math. J., 8, 451 (1941)

* Von Neumann, J., and Morgenstern, O., The Theory of Games and Economic Be-
haviour, Chap. 3, Princeton University Press, Princeton, 1947.

REMARK ON WEYL'S NOTE “INEQUALITIES BETWEEN THE
TWO KINDS OF EIGENVALUES OF A LINEAR
TRANSFORMATION"*

By GEORGE PoLya
DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY
Communicated by H. Weyl, November 25, 1949

In the note quoted above H. Weyl proved a Theorem involving a func-
tion (A) and concerning the eigenvalues a; of a linear transformation 4
and those, k, of A*4. If the k and A, = |a|? are arranged in descending
order,




