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Fast Retrieval of Similar Configurations
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Abstract—Configuration similarity is a special form of con- v, v1, ve, v3, From ImageDB, Where Nk, v1), NW(vg, vs),
tent-based image retrieval that considers relative object locations. N(v, v3), ... (NE meansiortheast NW northwestand so on).

It can be used as a standalone method, or to complement re- Formally, a configuration similarity query can be de-
trieval based on visual or semantic features. The corresponding . ’ -
scribed by 1) a set ofx variables, vg,vy,...,v,—1 that

queries ask for sets of objects that satisfy some spatio-temporal . . o) .
constraints, e.g., “find all triplets of objects (v1, v2, v3), such that appear in the query; 2) for each variablg a finite domain
v, is northeastof v,, which is inside v3.” Exhaustive processing D; = {uo,...,un;—1} Of N; values; and 3) for each pair
(i.e., retrieval of the best solutions) of configuration similarity of variables ¢;, v;), @ constraintC;; which can be a simple
queries, in general, has exponential complexity and fast search for g5 ati6_temporal relation or a disjunction of relations. The
sub-optimal solutions is the only way to deal with the vast amounts ) -

example query contains four variablég, ..., vs), one for

of multimedia information in several real-time applications. In ) . . -
this paper we first discuss the utilization of nonsystematic search €very drawn object. The domain of each variable consists of the

heuristics, based on genetic algorithms, simulated annealing and objects in the image(s) to be searched for the particular config-
hill climbing approaches. An extensive experimentation with yration. The input constraints restrict the possible assignments
real and synthetic datasets reveals that hill climbing techniques of variables to subsets of the domains. In addition to binary

are the best for the current problem; therefore, as a subsequent tio-t | relati | llow th
step we study the search space, and develop improved variations SPall0-temporalrelations, some query languages allow the user

of hill climbing that take advantage of the special structure of tO Specify unary constraints in the form of object properties
the problem to enhance speed. The proposed heuristic methodsat the feature«; is a red square) or the semantic leve} (

significantly outperform systematic search when there is only is a building). In this case, appropriate retrieval algorithms

limited time for query processing. (e.g., for color matching) must be integrated with the ones for
Index Terms—Content-based retrieval, local search algorithms, configuration similarity.
spatial similarity. As in most forms of information retrieval, a scoring mech-
anism should be employed for inexact matches. Depending on
l. INTRODUCTION the types of constraints allowed in the expression of queries,

I : . .several types of similarity measures have been proposed. [22]
HE _Iarge_ avallgblll_ty of visual Contef“ N~ emerging, ses Allen’s [1] relations in multidimensional space and con-
multlmedla_ap_phcatlons and the_worIdW|de web (WWW eptual neighborhoods [10]. The idea is extended in [28] with
has triggered significant advances in content-based remeﬁ‘?fincorporation of binary string encoding to automate simi-
mechanisms. Such mechanisms, sometimes in conjunct,gn

ith traditional inf ) oval techni ¢ I ty calculations. Conceptual neighborhoods for topological
with traditional information retrieval techniques for text, allowe g (e.g., inside, overlap) are also applied in [8]. Refer-
users to access a variety of information sources. A spec

4 L oo DEE ce [15] uses angular directions (e.g., northeast is defined as
form of content-based retrieval t®nfigurationsimilarity, also

K tial struct wsimilaritv. Th an angle of 4b) and fuzzy similarity measures. A related ap-
nown asspa ial s fuc ural or arrangementsimiarity. 1he 4400, which also includes distances between object centroids,
corresponding queries describe some prototype configurat Q% olowed in [27]

and the goal is tg retrle\{e all images contalmng arrangememﬁrrespective of the relations employed and the similarity mea-
of objects matching the input exactly or approximately. As ay,

| ider that th is looking for all i ” res used, the goal of query processing is to find instantiations
example consider that the USer 1S looking for allimages (vi %1 variables to image objects so that the input constraints are
frames, html pages, VLSI circuits) containing arrangeme

atisfied to a maximum degree. Theconsistency degreé;;
similar to those of Fig.1(a). Such a query could be expressed g y degreé,;

e A . : 9&¥a binary instantiatio{v; « wug,v; < w} is defined as
one of the existing pictorial languages that permit conﬂgurauqﬂe dissimilarity between the relatioR(us, u;) (between ob-
similarity retrieval, e.g.VisualSeek34], Query by Sketcf8], !

jectsu andw; in the image to be searched) and the constraint
PQBE[29], Safe[35], or extended SQL commands, e.9., Sele ;; (betweenw; andv; in the query). Given the inconsistency

degrees of binary constraints, the inconsistency ded(&e
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Fig. 1. Query example and solutions.

constraints (e.g., betweey andv,) are not totally satisfied. If assume a predefined set of relations to be used by all users in
N isthe image cardinality, the total number of possible solutiordl queries. Dynamic methods can be employed with any type
that have to be considered in each image is equal to the numbkrrelations (assuming of course that the query language allows
of n-permutations of théV objects:N!/(N — n)!. Due to the different sets of relations for different queries). Query variables
high cost of query processing, it is not always possible to seardn befixed or unrestricted a fixed variable can be instantiated
all database images within a reasonable amount of time. In sotn@t most one object in each image, while an unrestricted one
cases, systematic search for the best solutions even in a sirmgle range within the whole domain.
large image may take hours to complete [27]. A class of methods, which can be grouped under a general
An alternative approach is to compromise quality in order ftategory calleghairwise matchingassumes that all query vari-
achieve speed; in other words, we could assign a certain amoalples are fixed (e.g., find all images in which George is left of
of processing to each image (possibly proportional to its size ldiary). Thus, an image has at most one configuration matching
importance) so that the whole database can be searched witha query which can be found in polynomial time as follows:
the available time. In this paper we follow this approach and ea) locate the query objects in the image (possibly using an index
ploit nonsystematic search heuristics that can quickly provide object id), b) for each object pair compute its similarity to
good, but not necessarily optimal, solutions. The contributiotise corresponding query constraint, and c) calculate the total
of this work can be summarized as follows: a) we first applgimilarity of the configuration using the pairwise similarities.
three search methodologies, genetic algorithms, hill climbirjd5] follows this approach to answer configuration similarity
and simulated annealing, to the problem of configuration sintfueries involving angular directions including rotation in-
larity retrieval and identify the best one (hill climbing) using avariants. [22] deals with projection directions and topology.
variety of experimental settings; b) we perform a study of th&lgorithms that combine pairwise matching with contextual
solution space and evaluate alternative search strategies fordiithilarity (i.e., based on object features) can be found in
climbing; and c) based on our study, we develop improved alg&7]. Assuming that image objects are stored using absolute
rithms that take advantage of the spatial structure of the problewordinates, pairwise matching can be applied with dynamic
to enhance performance. relation schemes. Its disadvantage is its limited applicability
The rest of the paper is organized as follows. Section due to the fixed nature of query variables.
outlines previous processing approaches and discusses theiB0] solves configuration queries for medical images
advantages and shortcomings. Section Il describes the éy-rays) that contain a constant number of labeled/expected
plication of genetic algorithms, hill climbing and simulatedbjects (e.g., stomach, heart) and a small number of unlabeled
annealing, to configuration similarity retrieval. Section I\ones (e.g., tumors). Every image is mapped onto a point in
compares systematic search with nonsystematic search, usingti-dimensional space, where each dimension corresponds
experiments with both synthetic and real datasets. Sectiont®,a relation between a specific pair of objects; i.e.Nifis
studies the problem space and proposes improved variationshef number of image objects amdhe number of relations in
hill climbing. Section VI concludes the paper with a discussiotthe relation scheme, the number of dimension®isN?).
Queries, which are also X-ray images containing mostly la-
beled (i.e., fixed) variables, are processed by multidimensional
nearest neighbor search using R-trees. In order to keep the
The problem of configuration similarity retrieval is similarnumber of dimensions stable, images with unlabeled objects
to scene matching, which has been extensively studied @re decomposed into combinations of images with fixed size.
computer vision and pattern recognition [32], [33]. In thén enhanced version that reduces the number of dimensions
multimedia databases literature, several forms of processisgproposed in [31]. Performance could be further improved
configuration similarity, based on different assumptions arfy employing more efficient high dimensional indexing
algorithms, have been proposed. The various approaches waihods, such as M trees [6], the pyramid technique [2] etc.
be classified according to the size of database images for whidavertheless, the method (like all techniques based on high
they can be applied, the form of relations permitted, and tidémensional indexing and search) is applicable only for static
type of query variables. The form of relations, otherwise calleélation schemes (otherwise it is not possible to pre-determine
relation schemgecan bestatic or dynamic Static methods the dimensions) and databases with small images (fewer than

Il. QUERY PROCESSINGTECHNIQUES
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ten objects) of mainly labeled objects (otherwise, the numbidre search process starts, a sePathromosomes (called initial

of dimensions and images explodes to unmanageable levelspopulation) is initialized to form the first generation. Then the
A number of methods are based on several variations of twibree genetic search operations are repeatedly applied in order to

dimensional (2-D) strings, which encode the arrangement of alitain a population (i.e., a new set of solutions) with better char-

jects on each dimension into sequential struct@£s3 strings  acteristics, on which the genetic algorithm performs the same

capture the object projections, whilDC' and 2DG strings actions and so on, until a stopping criterion is met.

decompose objects in entities with disjoint convex hulls, al- Next we demonstrategenetic configuration similarity algo-

lowing the representation of more detailed spatial informatiagithm (GCSA), by presenting the encoding mechanism and then

at the expense of storage [3], [19], [20]. Every database imaifpe selection, crossover and mutation operators.

is indexed by a 2-D string, and queries are also transformed tdEncoding MechanismEach chromosome/solution is simply

2-D strings while configuration similarity retrieval is performechn arrayS of n values, where|i] is the instantiation of variable

by applying appropriate string matching algorithms [4]. If the; in solutionS. The quality ofS is measured by itfitnessf

guery contains only fixed variables, the cost of processing eagle., its similarity). F' is the average fithess of a population of

image is polynomial, while in the general case it is exponenti@hromosomes.

since matching has to be performed for multiple instantiations Selection MechanismThis operation consists of two parts:

of the variables to different image objects. Users are not allowedaluation of a chromosome and offspring allocation. Evalua-

to define their own relation scheme, but are restricted to the t&n is performed by measuring the above defined fitness value;

lations captured by the 2-D strings. offspring generation is then done by allocating to each chromo-
[27] deals with configuration similarity without any restric-some, a number of offspring proportional to its fitness. GCSA

tion on the type of variables or relations. Approximate retrievathplements thetochastic remainder techniq{@6]: a solution

is modeled and solved as a constraint satisfaction problemibyassigned offspring according to the integer part of the pro-

applying branch and bound algorithms that stop searching omqm@tionate fitnesg f/F') value in a deterministic way and the

a partial solution cannot lead to a desired target. The methipdctional parts are put in a roulette whie@r determining the

is applicable for images of02-103 objects and can be em-remaining offspring. Thus, we restrict randomness to the frac-

ployed with variable relation schemes. In [26], the incorpordional parts only and assure that a good chromosome will not

tion of spatial indexing (R-trees) enables retrieval from mualanish.

larger imagesl(0*—10° objects). Although this approach works Crossover mechanisia the driving force in thexploration

well in most cases, systematic search algorithms do not havpaat of a genetic algorithm. In the simplest approach, pairs of

predictable behavior depending on the problem size. Differestiromosomes are selected randomly from the population. For

guery/image combinations, even with the same number of vagach pair a crossover point is defined randomly, and the chro-

ables and image objects, may yield vast variances in cost deesomes beyond it are mutually exchanged, with probability

pending orconstrainednegd 2]. For instance, the running time .. (crossover ratg producing two new chromosomes. The

for the same query in two images of the same size may be ordeve newly generated chromosomes are very likely to possess

of magnitude different. As a consequence, a large part of queimg good characteristics of their parentii{ding-block hy-

processing may be devoted to a few images, while other imagehesig13]). In our case this corresponds to swapping of the

may not be searched at all within the available time. assignments in two solutions after a selected point. One-point
crossover is inefficient for our application domain, since the
l1l. HEURISTIC SEARCH FORCONFIGURATION SIMILARITY probability of a bit to be swapped increases as we move to the

Consid datab ith | . hend of the string. Instead we selected a two-point crossover
onsider a database With numerous, 1arge Images WNgi& nanism for GCSA: after the pairing of chromosomes, two
users can ask any type of queries (i.e., with nonfixed Va”ablﬁﬁssover points are randomly selected and the portion of the

using variable relat.ion schemgs. The only approach _that COWf omosome in between them is swapped. The entire operation
be employed here is systematic search [26], [27], which dueigo erformed with probability..

th_(:h\_/vorst-case ;xp?nenulal co(sjt |stno;tjgu|arza_?:]eed t]f_) terrrt1_|nat utation Mechanism:Mutation aims at restoring lost ge-
within reasonable time. In order to deal with configuralion oy maierial and is performed in GCSA by simply changing

similarity under I_|m|ted tl|me, we.employ. search h?u”St'C variable instantiation with a probabilipy,, called themuta-
based on genetic algorithms, hill climbing and simulat

. : . nrate Although mutation is not the primary search operation
annealing, which are explained as follows. and sometimes is omitted, it may be very usefulploitation
i.e., cases where, through selection and crossover, all the chro-
mosomes have converged to a local optimum for some variable.

Genetic algorithms [13] are based on the concepts of nat-GCSA starts with an initial population @ randomly gen-
ural mutation and the survival of the fittest individuals. Giveerated chromosomes/solutions and terminates after the creation
a well-defined search space, three different genetic operatioasd evaluation off generations. If only one solution is needed,
selection, crossoveand mutation are applied to transform anthen the best chromosome among all generations is returned.
initial population of chromosomes to next generation with thEhe option of specifying targetfitness also exists (i.e., retrieve
objective to improve their quality. A chromosome is an encoded, )
. . . . . Roulette wheel selectiallocates a sector of the wheel equaltof / F to

representation of a feasible solution (i.e., in our problem an ag,

- > ' X ery chromosome and then creates an offspring if a generated number in the
signment of each query variable to an image object). Befotge of 0 tr, falls inside the assigned sector of the chromosome.

A. Genetic Algorithms
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Fig. 2. Fitness (similarity) as a function &f andG in GCSA. found, it replaces the previous one. The process continues until

a local maximum is reached. This iterative optimization is re-

the bestK” solutions where the similarity is greater thanges), peated a number of times, each time starting from a different

in which case only chromosomes that exceed the target are I@%‘?d Th_e user defingg the stopping (_:rit_erign by specifyirjg the
at each run of GCSA. running time, or providing the target similarity of the solutions

19, be retrieved. As time approximates, the probability that

carried out on the control parametef, G, . and i, Most iterative improvement will find the global maximum approxi-
results suggest that the mutation and the crossover rate shd[jfies 1 [23]. However, given a finite amount of time, the algo-
be in the range of 0.001%-0.05% and 0.60%—0.95%, respHlM terminates at a local maximum.

tively. We experimented with these values using the queries and _

datasets described in Section IV. The best results for most caSesSimulated Annealing

were achieved fofi, = 0.05% andp. = 0.60. We measured  configuration similarity simulated annealif@SSA), based
the average similarity of the best solutions (for all combinations, [5], [18], also performs random walks, but in addition to up-
of queries and datasets) found by GCSA for several valuesyi it also accepts downhill moves with a certain probability.
P in the range 50-300 and in the range 500-100 (a8 in-  The intuition behind accepting downhill moves is led by the fact
creases(s has to decrease in order to keep the execution tifgest some local maxima may be close to each other, separated by
constant). Fig. 2 shows the fitness of the solution as a functigrsmall number of downhill moves. If only uphill moves were
of P andG. . o accepted (as in CSlI) the algorithm would stop at the first local

The different values of do'not affect fitness S|g_n|f|cantly; maximum visited, missing a subsequent (and possibly better)
we choseP = 50 because this value produces fair results fgne. Fig. 3 illustrates CSSA for the case where the user requires
all cases and is small enough to allow a sufficient number g tions exceeding the similarity specified tayget
generations even for large problem instances. Combined withrhe inner for-loop is calletbvel Each level is executed with
the relatively high value ofi. (0.60) GCSA was able to exploit 4 fixed value of the paramet@t. The starting value df is such
a large portion of the solution space. that the probability:xp(D;/T) at the first levels approximates
o 1, whereD; denotes the difference between the similarity of
B. Hill Climbing the current solutiors and the new random neighbst. After

The problem space for configuration queries can be thoughe execution of each level; is reduced according to some
of as a graph, where each solution corresponds to a node fagction, and the next level is performed using the new value of
sociated with a similarity value. The goal is to find the nod€g. This means that the probability of accepting a downhill move
with the globally maximum similarity, i.e., the best solutionsis greater at the earlier levels and decreases in the subsequent
Hill climbing algorithms operate on such a graph, performingnes. CSSA terminates when the valu€lbfs very close to
random walks between the nodes based on a certain movenzemo and thus the probability of accepting downhill moves is
(transition) mechanism. This transition mechanism definesalmost zero. Another way for the algorithm to stop is when a
neighborhood for each nod® which consists of all the nodesfixed criterion is reached; for example, when a solution with a
that can be reached frofin one move. In our case, the neighgiven target similarity has been found.
bors of S are all the solutions that can be derived frérby As with GCSA, the quality of the output is strongly related to
changing the assignment of a single variable, i.e., a node lilas choice parameter values. In order to define the initial value
n(N — 1) neighbors, where is the number of query variables7 we adopt the method of [18]: a large value ffiy is chosen
and N the image cardinality (each variable can taKe— 1 and a number of transitions are performed. If the acceptance
values, excluding its current assignment). A move is called ugtio x, defined as the number of accepted transitions divided
hill, if it leads to a better solution, and downhill if the destinatiotby the number of proposed transitions, is less than a given value
node has lower similarity. xo (in [18], zo = 0.8), T} is doubled. This procedure continues

Configuration similarity iterative improvemeg€SII) starts until the acceptance ratio exceeds Experimental evaluation
with a randomly chosen initial solutioséed and tries to find suggests that, = 0.8 and a1 equal to the similarity of the
a better one by visiting random neighbors. If such a solutioniisitial solution, is the best combination for the initial value of

Several theoretical and empirical studies [14], [36] have be
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T. For decreasing the value @f, we apply the common (e.g., outperforms other search heuristics due to its simplicity [11].
[17]) decrement rulel} 1 = a * 1}, wherea = 0.95. The experiments were run on a SUN UltraSparc2 (200 MHz)
The length of the inner while-loop is determined by the equwith 256 MB of RAM.
librium condition. For a given value df’, an equilibrium is The first set of experiments measures the CPU time (in mil-
reached if all the neighbors of a solutiéih have the same sim- liseconds) required to find one solution with similafitssbove
ilarity with S. This parameter is, in general, the most coma target of 0.7, 0.75 and 0.8. Each execution was allowed 400 s
plicated to adjust because it is closely related to the specif@wcomplete; after this period it was terminated. Fig. 4 illustrates
problem. We experimented using several queries with variote results for every query size/dataset combination (each row
sizes, over multiple datasets. The following formula providesarresponds to one query size and each column to one dataset).

suitable value for the number of iterations: CSll and CSSA clearly outperform the other algorithms for all
N cases, with CSlI being the best option. Moreover, these algo-

log (P(N,n)) = log (7> (2) rithms were the only ones to successfully terminate for all com-
(N = mn)! binations; FC and RND exceeded the time threshold in most

large queries, and their results are omitted from most graphs.
gi}ll\lD, in general, outperformed FC. This is because RND, due
lﬁ)]é'ts simple implementation, checks more instantiations per
second than the other algorithms. GCSA, on the average, yields
slightly better performance than RND, but in comparison to
CSIll and CSSA requires more time to reach a solution above
the target similarity.

In order to evaluate performance, we constructed five sets,The performance of all algorithms degrades as the query size
each containing 25 queries using the relation scheme and siiereases because large queries have, in general, few good solu-
larity measuresof [7]. The number of variables in each set wasions and a large part of the space has to be searched. The algo-
fixed to three, six, nine, 12, and 15. Query tightness varied frofithms are most effective in the second dataset due to the pres-
complete queries (where all pairs of variables are constrainedgttce of a high number of solutions, especially for small queries
very loose ones involving only a few nonrestrictive constraintnote that RND always finds solutions for target similarity 0.7).
We used the three 2-D datasets in Fig. 4, the first set conta®bviously, if the available processing time increases, FC will
randomly generated rectangles according to a uniform distgiventually outperform nonsystematic search—but for the cur-
bution, while the second set contains a VLSI circuit, and thent, rather long (400 s) processing limit, it is inefficient.
third set contains road segments of Greece. Note that the derfhe next set of experiments measures the similarity of the
sity (sum of all rectangle areas divided by the workspace) abgst 50 solutions retrieved by the algorithms as a function of
distribution of the objects significantly affects the performanage execution time (50, 100, 150, and 200 s). Each diagram in
of algorithms since it determines the quality of solutions. Fa#ig. 5 corresponds to a different query size and shows the simi-
instance, queries involving constraints sucloasrlap inside  larity ranges of the 50 solutions averaged over the three datasets
etc., are more easily satisfied in the second dataset due to its ligFig. 4. In other words, the lowest (highest) value represents
density. Heuristic search is especially sensitive to the numbertibé average of all lowest (highest) similarities for queries of the
solutions [12]; if there exist only a few good solutions (e.g., fagiven size in any dataset.
some restrictive large queries) it requires a significant amountAs expected, CSIl and CSSA again outperform the other
of time to find them. The above datasets cover a wide rangkjorithms. The greater range of similarity values for CSSA can
of cardinality values, data densities and distributions; thus theg explained by the fact that it starts from a random solution,
provide a good estimation for the performance of the algorithmgich tends to have low similarity and remains in this region,
on most problem instances. until the temperature is reduced significantly. CSIlI also starts

As a benchmark for systematic search we u$aavard from a solution with low similarity, but very soon reaches
checking(FC) [16], because it is considered to be one of the region with high similarity because it accepts only better
most effective algorithms for general CSP problems, as well slutions. Therefore, it has a better performance for the current
for configuration similarity [26], [27]. The current implemen-problem because it can reach very quickly a local maximum
tation of FC works in dranch and boundhanner, i.e., a partial while SA spends the initial stages exploiting low similarity
solution is abandoned if it cannot lead to similarity equal aegions.
higher than the best already found. In this way unsuccessfulGCSA performs better than RND but the quality of retrieved
instantiations are rejected early and the search space is prug@ldtions with respect to CSll and CSSA drops for large queries
effectively. We also compare performance with random sarfwhere the number of good solutions is small). The wide range
pling (RND), which chooses solutions randomly and keeps tla¢ similarities for queries with three variables can be explained
best ones—for some optimization problems, random samplibg the fact that if a single instantiation changes (e.g., due to mu-

. T 0 . )
2The algorithms can be employed with any type of spatial constraints. DE%“O”)’ itsignificantly affects (up to 33%) the fitness of the solu

to the absence of a standard benchmark, we use the relation scheme in [7] SitR@. FC is acceptable only for queries involving three variables
a) it is general, in the sense that it can express all types of common constraints

(i.e., direction, topological and distance), b) it permits the automatic calculation

of similarity measures, and c) it has been used for systematic search algorithniSimilarity values range between 0 and 1. Some queries (especially large
[26]. ones) do not have perfect matches.

whereP(N, n) is the number ofi-permutations of theéV ob-
jects (i.e., the number of possible solutions). (2) has been wid
used in the constraint satisfaction literature as a measure of
problem size [12].

IV. EXPERIMENTAL EVALUATION OF SEARCH HEURISTICS
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Fig. 4. Time (in milliseconds) required to retrieve a solution with a given target similarity.

where there is enough time to search a good part of the sdiiations for the partially satisfied constraints and differ only on
tion space. Its performance deteriorates significantly with thlee remaining variables.

query size. It can be observed that that for large queries all sodin summary, nonsystematic clearly outperforms systematic
lutions retrieved are in a narrow and low similarity range. Thisearch when the processing time is limited with respect to the
is because in restricted time periods, FC will find an area pfoblem size. Among the heuristics tested, CSll yields the best
the search space where some constraints are partially satisfiedormance. Furthermore, it does not require parameter tuning.
(while the rest totally violated) and retrieve all 50 solutions iffhis is a significant advantage because tuning of GCSA and
this area. Most of these solutions tend to have the same inst&@%$SA is rather complicated. Moreover, the parameter values
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Fig. 5. Similarity range of 50 best solutions for predetermined execution time.

depend on the query and dataset characteristics (i.e., a sehafever, that due to the random nature of search, better neigh-
values that yield optimal results for a query/image combinatiobors may be missed since some instantiations are tried multiple
may provide very poor results for another combination). Subgémes, whereas others not at all. Another optioalishest value
qguently, we further improve the performance of hill climbing byelection(sometimes calledteepest ascentwhich systemati-
proposing alternative search strategies. cally tries all possible values in the domain of the variable to
be re-instantiated and assigns the one that results in the highest
V. IMPROVED HILL CLIMBING ALGORITHMS similarity.
CSllI generates neighbors by selecting a random variable ahd Search Space Analysis
Changing its instantiation. An alternative appl’oach, motivated“‘] order to Comprehend the behavior of hill C||mb|ng under
by conflict minimization algorithms [21] is to select the “worst’qjfferent search strategies, we first study the search space for
variable. The inconsistency degree of a variablgcurrently configuration similarity. The goal is to identify how easily are
instantiated to Valuek) in a solutionS is defined as the sum of local maxima found and how much they differ from random
inconsistency degrees of all binary instantiations involving  solutions. For the first experiment, we randomly selected five
gueries with nine variables, and five with 12, and for each query

d(vi, S) = > dij (Cij, R(uk, w)) we generated 500 random solutions in a dataset of 1,000 uni-
Vj,i#j and 0<j<n formly distributed rectangles with density 0.5. Fig. 6 shows the
where{v; «— u;}. (3) averagesimilarity of a solution and thaveragemaximumand

minimumsimilarities of the neighbors that can be reached with

Worst variable selectioneinstantiates the variable with thea single move. The similarity values are scaled, i.e., they are di-
highest inconsistency degree, so that the similarity of the spgded by the average maximum similarity found in each case.
cific solution may be increased significantly. If the worst variThe x-axis represents the five different queries, with no specific
able cannot be improved, the second worst will be considersidnificance in the placement. According to the diagrams, there
and so on. If one variable can be improved, the next step w#la considerable difference between the similarity of a solution
consider again the new worst one; otherwise, if all variables ard the maximum and minimum similarity of its neighbors. For
exhausted with no improvement, the current solution is consiglieries of size 9, this difference is around 15%, while for queries
ered to be a local maximum. involving 12 objects about 10%. Thus, even a single move can

Once avariable is chosen for reinstantiation, CSll determinkave a significant effect on the quality of the solution especially
its new value by applyinfirst-better value selectiomg., by as- in small queries (because each variable has a higher contribu-
signing values to the specific variable randomly, until a bettéion to the total similarity).
instantiation is found. When the similarity of a solution is very The second experiment studies the numbestepsi.e., up-
low, first-better selection performs just a few attempts beforefitll moves that must be performed in order to reach a local max-
finds a better solution. As the quality increases, it becomes mamaum. We use two approaches for identifying local maxima: i)
difficult for the solution to be improved by random re-instantiin the first one we replace a solution with the best of all its neigh-
ations. If afterV unsuccessful assignments no better neighbbors and ii) in the second one we accept the first better neighbor
is found, the solution is considered a local maximum. Noticgund by changing the instantiations of random variables. We
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attempts (see Fig. 7). On the other hand, ifthmaxapproach is
Fig. 7. Similarity and total number of attempts versus the number of step%mpmyed the solution will be found in about 40 steps. However
the total number of attempts is lower than 15 000 because uphill
refer to the local maxima obtained using these approachesm@sves are easily performed from solutions of low similarity.
All-maximum(A-maxfor short) andrirst-maximun(F-max re- The average number of attempts per step when searching for
spectively. When searching fé-max each step tries all pos- F-maxis shown Fig. 8. Up to the 37th step, fewer than 1000
sible values for each variable, i.e., a totald(fn - V) attempts. instantiations are needed before each uphill move is féuhid.
For F-maxthis number differs in each step; in the best case amat point the similarity is close to 0.8. Every attempt involves
uphill move can be found with the first attempt, while in thex similarity computation; thus the number of attempts (rather
worst, even Of - N) attempts may fail to find a better neighbotthan steps) determines the cost of search. The advantage of the
(some instantiations may be missed). F-maxsearch approach is clear, since it converges much faster
Fig. 7 shows how these maxima are reached (attempts, stmhigh similarity solutions.
ilarity) as a function of the number of steps, for a query with
nine variables over the 0.5 density dataset 9, N = 10°). B, Performance of Hill Climbing Alternatives
The horizontal axis corresponds to the number of steps, the Ief%\ . . ) .
. . : ccording to the previous results, first-better value is ex-
y-axis to the total number of attempts (including unsuccessful . .
: o ) . SN .~~~ pected to outperform all-best selection. However, as the quality
instantiations) and the right-axis to similarity. A-max (simi-

larity 0.824) is reached after 24 steps; 9000 instantiations %I?:]Zebse%lgzqoens';%?:3?;&33?2;?;63 k;);t;agfd t(r)g éig‘;ﬁngz
tested in each step, resulting in 216 000 attenipiniax(sim- gep

o . earched (see Fig. 8). Near local maxima, first-better behaves
llarity 0.831) is rgached af.te.r ?7 steps.and 213 408. attempﬁﬁés all-best value selection, but unlike exhaustive search it
Search forA-maxis deterministic, meaning that starting with av miss some a0od neiahbors. Conseauently. in some cases
one seed, we always reach the same local maximum. On fphy 9 9 ) g Y.

e . : . :
other hand, the value ¢-maxand the steps required to reacpvnere there is enough time for processing (small queries and/or

it change depending on the order that neighbors are visited.dlantasets)’ all-best may eventually yield better solutions than

. first-better selection.
most cases the two maxima are close to each other.

. . L . In order to test this observation we ran experiments with the
Although search foF-maxfinds the highest similarity using L Sl : .
. . four variations of hill climbing (2 variable selectio2 value se-
alonger path (77 steps as opposed to 24), it reaches high quality. . . : .
> . X . > 1 Jection mechanisms) using the query sets of six and 15 variables
solutions faster. Consider, for instance, a solution with similarity

around 0.8. If Sef_irCh i.S performed accorQing to Akmaxap- 4The maximum number of attempts per step for this experiment is 9000, since
proach, the solution will be found after nine steps and 81 0@@re exist nine variables, each taking 1000 values.
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Fig. 9. Similarity retrieved as a function of the execution time.

over datasets of 1000 uniformly distributed rectangles with den-For 6-variable queries, however, W-A (worst variable selec-
sities of 0.1 and %.Fig. 9 shows the average similarity (of 25tion, all best value) outperforms CSlI after 100 s and achieves
gueries in each set) retrieved over the two datasets every 50the highest similarity. This is due to a combination of reasons:
Observe that the relative performance of the algorithms is tfer small queries, finding the best possible instantiation for a
same for both datasets, despite the large density difference, iariable may increase the similarity of the solution significantly,
plying that their effectiveness is independent of density. Firgispecially if the variable chosen is the worst one. Furthermore,
better value selection quickly (within the first 50 s) finds goodue to the small problem size, there is enough time to search
solutions even for the large queries. Among the two variabéxtensively within the neighborhood of a solution, identifying
selection mechanisms, random selection (R-F) is fadtean good local maxima. Motivated by these observations, we pro-
worst variable (W-F) since random variables are more easppse an algorithm that can outperform the previous ones in all
improved than the worst one. All-best value selection is ineffecases. The idea is to start with CSlI that quickly reaches an area
tive for large queries because the number of neighbors, as wllhigh similarity. In subsequent steps (when CSII starts be-
as the cost of similarity computations increases with the numbw®aving like exhaustive search), a deterministic value selection
of variables. Thus, W-A and R-A take a long time to convergechnique locates the good neighbors, using the spatial struc-
to high similarity regions. Notice that for 15 variables W-A conture of the problem to avoid the expensive search for all possible
verges after 200 s, while R-A does not converge at all within thariable instantiations.
300-s limit. R-A is worse than W-A, because some variables,
especially if the solution is good, contribute little, or not at allC. Window Value Selection

:.O th? tqtal degrfﬁ of mco_nst;ster:jcy. The:efore, fsfpendmg a IOngt:onsider the example query of Fig. 1(a), where the first three

Ime 1o improve these variables does not pay-oft. variables are instantiated to objeeis, u1, andus, as shown
5Most real-life datasets have densities between 0.1 and 1, with a dendfyFig. 10(a). Assume that these three instantiations perfectly

around 0.5 considered common/average. The datasets used in this sectiomfigch the query constraints. The fourth variaplg) is chosen

synthetic (so we can vary the densities) and relatively sriafl bjects—so K o . .

we can run numerous experiments). Nevertheless, similar results are obtained re_mStantIE_ltlon and th_e goal is to find the best Value_ for

with the real datasets of Section IV. it. Variable v is related with the other ones by the following

6R-F corresponds to CSII algorithm. projection-based constraints: south(vg), northeastfs, v)
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and northwest(;, v2). Each of the constraints, in combination oss :
with the current value of the corresponding variable, defines oss; |
window in space containing all consistent valuesdgr(e.g.,  oen
all objects south of are insidew,). The best values af; (i.e.,  oss;

0872

—0.864

0.856

satisfying all constraints) are the ones that lie in the intersecticoss oass

of all windows. In other words, if a value is found in the dark o 084

gray area of Fig. 10(a), there is no need to search the whc Smm: * ;w” o Sim“mi 75“
domain ofvs. - g |

0.846 1

Although, in the example of Fig. 10(a), we assume that th°**
first three variables are instantiated to objects that result in a pe®**
fect match, in most cases the partial solution after the removal ***

a single variable, is only approximate. As an example consid¢®* :.-" ol .,/'4

the partial solution of Fig. 10(b), wherg has been shifted t0 0 e ;= w we m am me e
. . . Time Time

the left. The instantiationdy «— ug, v1 «— u1, v2 < ug} has LGSl ---B-- W-WVS oPS

some inconsistency degree on thaxis (the positions of the
objects on the axis are the same). As a result, the intersection Fig. 12. 2PS versus WVS and CSIl—Similarity as a function of time.
of wg, wy andws is empty and therefore cannot contain any ob-

jects. Intuitively, the good instantiations fog, are still found on the x-axis because there is no inconsistency on the y-axis.
somewhere in the area betweeay) u1, andus. In order to con- Although the objects in the intersection (dark gray area) do not

tinue improving the solution, we should extend the windows sesult in perfect matches (e.g., the constraint betwgemduv,

that a new value fors can be chosen. is still violated), they provide good solutions that can be further
Window value selectioVVS) applies this idea. Once theimproved in subsequent steps. The window extension method

variablev; for reinstantiation has been chosen, the appropriadepends on the relation scheme in use. In the current imple-

windowsw; (0 < j < n, i # j) are computed. Then eachmentation, which is based on conceptual neighbors [7], in ad-

window is extended according to the maximum inconsistendjtion to the original constraint, it neighbors are taken into

degreed of the partial solution (where all variables except foaccount when generating the window. If angular directions were
v; have been instantiated) on each dimension; the higher teed, anortheastconstraint, for instance, could generate an an-

value ofd, the larger the extension on the corresponding axgular window 40-5C in case of a low value af, or a window
In the example of Fig. 10(c)yo, w; andws are only extended 30°-6(C° for higher inconsistency.
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TABLE |
SIMILARITY AS A FUNCTION OF TIME RND AND FC

Time (seconds)
n | Method
50 100 150 200 250 300
6 RND 0.742521 0.749104 0.752542 0.755187 1 0.756688 | 0.758604
FC 0.6475 0.654167 1 0.691563 | 0.698229 | 0.703313 | 0.708438
s RND 0.665443 0.672321 | 0.678756 | 0.682307 | 0.683283 | 0.683923
FC 0.566101 0.56692 | 0.56869 |0.572113 [ 0.575488 [ 0.576732

In order to be able to search fast within such windows, all ob- We also repeated the same experiment using RND and FC.
jects within an image are sorted according to theoordinate Table | shows the best similarity retrieved over time for the
of the lower left point (this preprocessing takes place when temallest (six variables) and largest (15 variables) query sizes.
image is inserted in the database). The objects that fall inside thegeneral, both algorithms provide very low similarity when
window (and potentially some false hits) are found by a simpt®mmpared with the local search (see Fig. 12). RND produces
range query in this sorted list. The other three coordinates lwdtter results than FC within the 300 seconds but quality does
each retrieved object are checked and, if they also fall withirotincrease much over time, implying that that only a small per-
the specified window, the objectis kept as a good value. Initiallgentage of solutions have similarity close to a local maximum.
due to the low similarity of random solutions (seeds), the wireven though FC expectedly improves gradually with time it
dows and their intersection usually cover the whole workspaaes not find good solutions even for six variables within the
In this case WVS behaves like all-best value selection (with tlagailable limit. The situation is worse for 15 variables due to
additional overhead of computing the windows). As the incotthe significant increase of the search space; FC remains in the
sistency degree of the solution drops, the windows in some preeighborhood of the initial assignments, which in most cases
jections decrease restricting the search space. have low quality.

We compare WVS against best-value selection (i.e., exhausThese results motivate the need for fast retrieval of subop-
tive domain search) for worst and random variable selectidimal solutions in large multimedia databases. Among all tech-
Fig. 11 illustrates the results for query-sets (average of Biues tested, 2PS consistently yielded the best performance for
queries per set) with six and 15 variables over the dataset withcombinations of queries/datasets (including real data). In ad-
density 0.5(N = 10%). WVS always outperforms exhaustivedition to its robustness, another advantage of 2PS with respect
search; as in the case of all-best value selection (see expemenetic algorithms and simulated annealing is that it does not
iments in Fig. 9), WVS performs best with worst variableequire the complicated tuning of parameters that significantly
selection (W-WVS) since each re-instantiation may improwfect efficiency.
the solution significantly.

D. Two-Phase Search VI. CONCLUSION

Despite its good performance, W-WVS does not convergeThis paper applies nonsystematic search algorithms for
fast to high similarity regions, due to the large windows in thprocessing configuration similarity queries. We first apply
initial phases of the algorithm. To circumvent this problem, wiiree techniques based on genetic algorithms, iterative im-
propose awo-phase searcf2PS) algorithm that first uses CSllprovement and simulated annealing, and compare them against
to quickly find a good solution, which is then improved byforward checking, a very effective systematic search algorithm,
W-WVS. CSill is executed for a time analogous to the size of tlend random search. Extensive experimentation, with various
problem (for this implementation - N ms), and W-WVS for query/dataset combinations, shows that heuristic search is an
the remaining time. For instance, for a query with 15 variabledfective way to process configuration similarity in cases that
over a 1000 objects dataset, the running time of CSll is 15a.near optimal solution is needed in restricted time. The best
During this time CSII has performed enough steps to improgerformance is consistently achieved by CSII, which is based
the seed significantly. Thus, in most cases the initial windoves hill climbing; thus, as a second step we try to enhance its
of W-WVS restrict the search to a relatively small portion of thefficiency by studying alternative variable and value selection
space. mechanisms. Next we present window value selection, a

We compared 2PS with W-WVS and CSll using all query setschnique that quickly identifies the best values of a variable
over the 0.5 density datasg¥’ = 103). As shown in Fig. 12, while avoiding exhaustive search in its domain. Finally, the best
2PS outperforms both algorithms in all cases since it combinagerall algorithm is shown to be two-phase search, a method
their best characteristics. Observe that for small queries (six ahdt first applies CSlI to quickly find a good solution and then
nine variables), W-WVS produces better solutions than CSihproves it by window value selection.
even atthe first 50 s. As the query size increases, W-WVS slowsTo our knowledge, currently there do not exist other methods
down significantly and for 15 variables, it catches up with CSthat can solve arbitrary queries (with no restrictions on the
only at 300 s. size of the problem or the type of the variables), given a time
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limit. The proposed methods have a wide range of applicarsg]
tions in most modern spatial/multimedia database systems

; . . . [19]
(which are increasingly vector-based), as well as the upcomlnb
image/video compression methods such as MPEG-4. An effi-
cient way of indexing MPEG-4 video objects is proposed in [9].[20]
In addition, some query languages suclary-by-Sketc[8] [21]
andVisualSeek34] already provide facilities for the expression
of configuration similarity queries.

In our implementation we do not use any indexing for the
input datasets. The application of a multi-dimensional data
structure, such as R-trees, may improve the performance &3l
heuristic search as it does for systematic algorithms [26]. In
this way, the proposed algorithms are applicable in domaing4]
where the number of objects is very large (e.g., in the orde{
of 10°). Future work can be carried out on the application ]
of other sub-optimal algorithms (for a bibliography see [24])[26]
on configuration similarity. In order to achieve efficiency,
however, such algorithms need to be fine-tuned and modifieg,
for the particular, structure of the problem.
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