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Abstract—We introduce a new paradigm for real-time conver-
sion of a real world event into a rich multimedia database by pro-
cessing data from multiple sensors observing the event. Real-time
analysis of the sensor data, tightly coupled with domain knowledge,
results in instant indexing of multimedia dataat capture time. This
yields semantic information to answer complex queries about the
content and the ability to extract portions of data that correspond
to complex actions performed in the real world. The power of such
an instantly indexed multimedia database system, in content-based
retrieval of multimedia data or in semantic analysis and visualiza-
tion of the data, far exceeds that of systems that index multimedia
data only after it is produced.

We present LucentVision, an instantly indexed multimedia data-
base system developed for the sport of tennis. This system analyzes
video from multiple cameras in real time and captures the activity
of the players and the ball in the form of motion trajectories. The
system stores these trajectories in a database along with video,
three-dimensional (3-D) models of the environment, scores, and
other domain-specific information. LucentVision has been used to
enhance live television and Internet broadcasts with game analysis
and virtual replays in more than 250 international tennis matches.

Index Terms—Broadcast, content-based retrieval, Internet, tele-
vision, tracking, video, vision, visual data mining, visualization.

I. INTRODUCTION

I N THIS paper, we address the following question: “Can a
real world event be converted in real time into a multimedia

database that enables rich interactive experiences of the real
world event?” This question is motivated by several technology
trends such as proliferation of sensors that can observe real
world activity; ubiquitous availability of powerful computing
devices and advances in computer vision and other sensor data
processing techniques; digital convergence in networking (In-
ternet, telephone, and broadcast networks) and access devices
(PC, telephone, and TV) which facilitates remote interactive
access to multimedia databases; and availability of computer
graphics hardware that enables rich visualization of multimedia
data. We propose that the time is ripe for the pursuit of a new
class of databases thatinstantly indexreal world events.
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We define an instantly indexed multimedia database (IIMD)
system of a real world event to be one that a) is created in real
time as the real world event takes place; b) has a rich set of in-
dices derived from disparate sources; and c) allows domain-spe-
cific retrieval and visualization of multimedia data. Notice that
our definition of instant indexing emphasizes both real-time or
online indexing, as well as capture of data and indices that sup-
port a user’s domain-specific queries. Most multimedia data-
base systems presented in the literature have been limited to of-
fline indexing on a single stream of post-production material,
and to low-level, feature-based indices rather than a user’s se-
mantic criteria. While many important methods have been de-
veloped in this context, the utility of these systems in real world
applications is limited. We suggest that there is both signifi-
cant opportunity and challenge in developing systems that index
multiple streams in real time orduring production, rather than
post-production.

To further develop and exemplify this paradigm, we present
LucentVision, an IIMD system developed for sports broadcasts,
specifically for tennis. Sporting events are the most popular
form of live entertainment in the world, attracting millions of
viewers on television, personal computers, and a variety of other
endpoint devices. Sports have an established and sophisticated
broadcast production process involving producers, directors,
commentators, analysts, and video and audio technicians using
numerous cameras and microphones. Thus, there is significant
opportunity for IIMD systems to become part of this production
process and further engage and immerse viewers in the action,
suspense, and drama of the remote live event.

LucentVision analyzes video from multiple cameras in real
time, storing the activity of the players and the ball as motion
trajectories. The LucentVision database also stores three-di-
mensional (3-D) models of the environment, broadcast video,
scores, and other domain-specific information. The system
allows various clients, such as TV broadcasters and Internet
users, to query the database and experience a live or archived
tennis match in multiple forms—for example, as 3-D virtual
replays, visualizations of player strategy and performance, or
as video clips showing customized highlights from the match.
This system has been used in live TV and Internet broadcasts
of more than 250 international tennis matches since 1998.

The rest of this paper is organized as follows. Section II dis-
cusses related work in video indexing and retrieval, real-time
tracking, graphics, visualization, and spatio-temporal databases.
Section III presents a generic architecture for an instantly in-
dexed multimedia database system. Section IV discusses the in-
stantiation of the architecture in the LucentVision system. We
describe the real-time player tracking component of the Lu-

1520-9210/02$17.00 © 2002 IEEE



270 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 2, JUNE 2002

Fig. 1. Architecture of an IIMD system.

centVision system in Section V and the ball tracking component
in Section VI. Section VII presents the query and visualization
interface used in LucentVision. Section VIII presents a variety
of visualizations made possible by LucentVision. We give spe-
cial attention to the content based retrieval aspects of the system
in Section IX. We end with a discussion on how the LucentVi-
sion system can be generalized to other sports and nonsport ap-
plications, and other challenges in realizing instantly indexed
multimedia databases.

II. RELATED RESEARCH

Video indexing and retrieval are very active areas of research
(see, for example, [1]–[4]). Much of this work deals with
segmenting video and defining indices for efficient retrieval
of video segments. Many popular techniques detect scene
changes in broadcast or production video, thereby breaking
video into shots, and representing each shot by a key frame.
The characteristics of a key frame are then used for indexing
and subsequent retrieval. A significant challenge is to translate
a user’s semantic indexing criteria into such low-level indices.
We propose a different approach—instantly indexing multi-
media data during capture to convert a real world event into a
digital library in real time.

Tracking and analyzing the activity of people has a rich his-
tory (see, for example, [5]–[12]), a review of work in this area
is provided in [13]. Real-time people tracking systems emerged
only in recent years [14]–[17]. LucentVision uses dynamic clus-
tering of local feature paths to derive people trajectories in real
time. LucentVision is perhaps the most extensively tested people
tracking system today.

In recent years, computer-generated visualizations are
increasingly used in sports production to further enhance the
viewer experience. Interactive visualization is becoming even
more important with the ongoing convergence of television
and Internet broadcasting. These trends have led to a signifi-
cant amount of activity on sports analysis, visualization, and
interactive video browsing [4], [18]–[25]. Most work related to
sports visualization falls into two categories:

• overlay of virtual objects over video using augmented re-
ality techniques—examples of these include the virtual

first-down line in football or the virtual offside line in
soccer ([23], [24]) and virtual superposition of video of
two competitors taken at different times ([21]);

• generation of 3-D virtual replays which allow viewing of
the action from any viewpoint—these include semi-au-
tomatic rendering of the action in a virtual environment
([18], [22]) and reconstruction of a dynamic three-dimen-
sional model of the environment using numerous cameras
(e.g., [26]–[28]).

However, the emphasis of these visualization techniques has
primarily been on resynthesizing the sport, and not on deeper
analysis of the sport. The sports viewer, commentator, analyst,
player, or coach is often trying to obtain furtherinsight into
performance, style, and ultimately strategy. Our work addresses
these issues.

LucentVision uses motion trajectories of objects to represent
the spatio-temporal activity in a scene. The database community
is recognizing the importance of motion trajectories of objects
and spatio-temporal querying, especially in the context of ge-
ographic information systems and wireless localization based
services. This is prompting extensions of databases to support
motion trajectory based queries [29]–[31].

III. A RCHITECTURE OF ANIIMD SYSTEM

Fig. 1 illustrates the generic architecture of an IIMD system.
Both static and dynamic information is captured into a data-
base system and organized as relational and spatio-temporal
data. While much of the data fits into a relational model, sensor
streams, object activity data, and the environment model are not
amenable to the relational model.

Dynamic information is derived mostly by real-time analysis
of data from multiple disparate sensors observing real world ac-
tivity. Sensor data streams are also stored in the database. Re-
sults of real-time analysis typically include identification of in-
teresting objects (e.g., who is in the environment), their location,
and activity (e.g., what are they doing, how are they moving).
Real-time analysis can also result in detection of events that
are interesting in a domain (e.g., someone reached their peak
speed). However, the architecture does not limit generation of
dynamic event tags to real-time analysis alone. Event tags may
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Fig. 2. Instantiation of the IIMD Architecture in the LucentVision system.

come even from semi-automated or manual sources that are
available in an application domain, such as dynamic score data
in a sports production setting.

An IIMD system incorporates domain knowledge in a variety
of ways. First, design of tables in the relational database is based
on the known event hierarchy, and known objects of interest.
Second, the system maintains a geometric model of the envi-
ronment, as well as the location of all sensors in relation to this
model. Third, the system takes advantage of all available sources
of information such as scores in the sporting domain. Fourth, de-
sign of the real-time analysis system is based on knowledge of
the objects of interest in the domain. Sensor placement can also
be based on domain knowledge. Finally, design of the visual-
ization interface is based on knowledge of queries of interest in
the domain.

The IIMD approach offers the following crucial advantages
in data access and storage over traditional content-based media
retrieval systems:

• real-time cross-indexing of disparate data (e.g., object po-
sition, speed, score, and video);

• storage of relevant data alone (e.g., only video when a
person appears in a surveillance application, or only video
when play occurs in a sports application).

IV. I NSTANTIATION OF IIMD A RCHITECTURE INLUCENTVISION

Fig. 2 shows the instantiation of the IIMD architecture in
LucentVision. Synchronized video streams from eight cameras
observing a tennis match feed into a domain-specific, real-time
tracking subsystem. Two cameras are used for player tracking
and six for ball tracking. The tracking subsystem outputs player
and ball motion trajectories to a database, as discussed in
Sections V and VI. In addition dynamic score data is obtained
from a scoring system available in a tennis production. The
tracking system assigns a player trajectory to the appropriate
player by taking advantage of domain knowledge. It uses the
rules of tennis and the current score to figure out which player
is on which side of the court and seen by which camera.

LucentVision uses a relational database to organize data
by the hierarchical structure of events in tennis [32]. A tennis
“match” consists of “sets” which consist of “games” which, in
turn, consist of “points.” Each of these events has an associated

identifier, temporal extent, and score. We associate trajectories
, , corresponding to the two players and

the ball with every “point,” as “points” represent the shortest
playtime in the event hierarchy. Each “point” also has pointers
to video clips from the broadcast production. The relational
database structure, with its SQL query language, provides a
powerful mechanism for retrieving trajectory and video data
corresponding to any part of a tennis match, as discussed in
Section VII. However, the relational structure does not support
spatio-temporal queries based on analysis of trajectory data.
LucentVision has a spatio-temporal analysis structure built on
top of the relational structure.

A visualization interface, which resides in a client device, per-
forms queries on the database and offers the user a variety of re-
constructions of the event as discussed in Section VIII. This in-
terface is tailored to the computational and bandwidth resources
of different devices such as a PC with a broadband or narrow-
band Internet connection, a TV broadcast system, or a next gen-
eration cellphone. LucentVision’s greatest value comes from
combining spatio-temporal queries with score based queries as
discussed in Sections VII–IX. The system also has a video re-
trieval structure built on top of the relational database and per-
forms compelling content based video retrieval as discussed in
Section IX.

Reconstructions of the real world event range from high
fidelity representations (e.g., high quality video) to a compact
summary of the event (e.g., a map of players’ coverage of the
court). LucentVision produces broadcast grade graphics. It
generates VRML models of the environment and its changes
throughout an event. It also supports integrated media forms
(i.e., video streams of event activity, VRML environments, and
audio) using standards such as MPEG-4. Finally, the system
produces low-bandwidth output such as scoring or event icons
for cellphones and other devices.

V. TRACKING PLAYER MOTION

LucentVision uses visual tracking to identify and follow the
players using two cameras, each covering one half of the court.
Fig. 3 shows the typical view of a player tracking camera. The
desired outputs of the player tracking system are trajectories,
one per player, that represent the movement of the player. It
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Fig. 3. (Left) Example player trajectory and (right) contours, features, and feature paths used to derive the final trajectory.

is challenging to obtain a clean segmentation of the player at
all times. Differentiating the player from the background, espe-
cially in real time, is complicated by changing lighting condi-
tions, wide variations in clothing worn by players, differences
in visual characteristics of different courts, and the fast and non-
rigid motion of the player. The central problem is that real-time
segmentation does not yield a single region or a consistent set
of regions as the player moves across the court. In addition, the
overall motion of the body of the player has to be obtained in
spite of the nonrigid articulated motion of the limbs.

In order to robustly obtain player trajectories, we track local
features and derive the player trajectory by dynamically clus-
tering the paths of local features over a large number of frames
based on consistency of velocity and bounds on player dimen-
sions. Fig. 4 summarizes the steps in the player tracking system.
We extract the regions of motion by differencing consecutive
frames followed by thresholding. This is a fast operation and
works across varying lighting conditions. We use a morpholog-
ical closing operation [33] to fill small gaps in the extracted mo-
tion regions. Thus,

(1)

where is a binary image consisting of regions of interest at
time , is the input image at time, is a thresholding
operation with threshold , is a small circular structuring
element, and , indicate morphological dilation and ero-
sion operations. We do not have consistent segmentation of a
moving player even after this operation. The number of regions
per player change in shape, size, and number across frames.

Next, we determine local features on the extracted regions in
each frame. The local features are the extrema of curvature on
the bounding contours of the regions. The right portion of Fig. 3
shows an example of bounding contours of extracted regions (in
white). The figure also shows the features as small red circles
on the bounding contours. In the next step, we match features
detected in the current frame with the features detected in the
previous frame. This involves minimizing a distance measure

given by

(2)

Fig. 4. Steps to track player motion in each frame of video.

where is the Euclidean distance between feature positions,
is the difference in orientation of the contours at the feature

locations, is the difference in curvature of the contours at
the feature locations and , , are weighting factors. A
feature path consists of a sequence of feature matches and in-
dicates the motion of a feature over time. The parameters of a
path include { } where , , are vec-
tors giving the spatio-temporal coordinates at each sampling in-
stant, is the temporal length of the path, and, are the
mean and values over the path and , are the vari-
ances in and values over the path. The right portion of Fig. 3
also shows a number of feature paths (in green) corresponding
to the frame shown in the left portion of Fig. 3. There are nu-
merous feature paths of varying lengths. These paths are typi-
cally short-lived and partially overlapping. In order to obtain the
player trajectory, we dynamically group these paths into clusters
as explained below.

At each time instant, we group feature paths with sufficient
temporal overlap to form clusters. Multiple clusters are also
grouped into a single cluster in a similar fashion. The parame-
ters of a cluster include { } where

is a vector that gives the number of features contributing to a
cluster at each instant,is the total number of paths contributing
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Fig. 5. Six frames showing the development of a player trajectory over the course of a point in a tennis match.

Fig. 6. Example of tracking multiple people in a different application.

to the cluster, ( ) indicate the mean displacement of con-
tributing features from the cluster coordinates and ( ) in-
dicate the variance in displacements. We group two clusters or
a path and a cluster when they are close enough according to a
distance measure given by

(3)

where , are the maximum change in variances ofand
displacements of features resulting from merging the clusters,

is the normalized squared sum of the difference in orienta-
tions of the velocity vectors along the trajectories corresponding
to the two clusters, and , , are weighting factors based
on bounds on the size of a player.

The clustering algorithm is capable of tracking several objects
in real time (see Fig. 6). The motion of the body of the player
results in a single dominant cluster in the tennis application.
Motion of individual limbs of the player results in short-lived
clusters that are distinguished from the main cluster. While it is
not the focus of this paper, the smaller clusters can be analyzed
to derive more information on the motion of individual limbs of
a player or the motion of the racket. Sometimes, a player is not

the only individual moving in the scene, even with the restricted
view used in Fig. 3. Line judges also move, sometimes more
than the players. We use domain knowledge on relative positions
to distinguish player trajectories from those of line judges. We
map player trajectories from the image plane to the court ground
plane using camera calibration parameters [34].

We have extensively tested and used this tracking system [35]
in numerous international tournaments played under a variety of
lighting conditions (both outdoors and indoors) on different sur-
faces (concrete, synthetic, clay etc.). Tracking runs at 30 frames
a second on a single processor such as an SGI MIPS R10000 or
a Pentium III. Fig. 5 shows six frames from real-time tracking
over the course of a point.

VI. BALL TRACKING

Ball tracking is challenging because of the small size of the
ball (67 mm in diameter), the relatively long distances it travels
(over 26 m), the high speeds at which it travels (the fastest serves
are over 225 kmph), changing lighting conditions, especially in
outdoor events, and varying contrast between the ball and the
background across the scene.

A. System Design and Configuration

The ball tracking system [36] uses six monochrome progres-
sive scan (60 Hz) cameras connected to a quad-pentium work-
station with dual PCI bus. Experiments on image resolution de-
termined that a ball has to appear with a diameter of at least 10
pixels for reliable detection. As a result, we chose six progres-
sive scan cameras with 640480 pixels. The cameras cover the
volume of the court and capture images with temporal resolu-
tion good enough for ball tracking and spatial resolution suffi-
cient for identifying the ball. While cameras with an even higher
speed and resolution could be used, we are limited by real-time
processing and cost constraints. Monochrome cameras make the
bandwidth of a dual PCI bus sufficient for concurrent full-frame
capture at 60 Hz from all six cameras. Thus color, which is a
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strong cue for ball tracking, is sacrificed to meet other system
constraints, making ball segmentation even more challenging.

The six cameras are placed around a stadium with four cam-
eras on the side and two at the ends of the court. Each of the four
side cameras is paired with one of the end cameras to form a set
of four stereo pairs that track the ball in 3-D. Auto-iris lenses
adjust to large lighting changes in the course of a day. Addition-
ally, tracking parameters are dynamically updated, as explained
in Section VI-C.

B. Multithreaded Tracking

With multithreaded tracking we achieve an efficient, scalable
solution that works with distributed computing resources. Each
camera pair has an associated processing thread. Fig. 7 gives
an overview of the processing steps in each thread. A thread
waits for a trigger signal to start frame capture and processing.
Each thread has the following set of parameters: a trigger to start
processing, pointers to a pair of associated cameras, calibration
parameters of each camera, difference image thresholds, ball
size parameters, expected intensity range for the ball, expected
ball position in each image, size of the search window in each
image, a trigger signal for the subsequent processing thread, and
a pointer to the parameters of the subsequent thread. Prior to a
match, we calibrate the cameras [34], taking advantage of the
calibration grid provided by the court itself.

Upon receiving its trigger, a thread executes a loop of cap-
turing frames from the camera pair, detecting the ball in the cap-
tured frames, stereo matching, and updating the 3-D trajectory
and tracking parameters, until the ball goes out of view of any
one of its associated cameras. At that time, the current thread ini-
tializes the parameters for the thread corresponding to the sub-
sequent camera pair and triggers that thread.

This multithreaded approach scales in a straightforward
manner to any number of cameras tracking an object over a
large area. With a few modifications, the approach also scales
to tracking multiple objects with multiple cameras. In this
case, a thread associated with a camera pair (or set of cameras)
has triggers associated with each object. The thread tracks an
object when it receives a trigger signal corresponding to the
object. Different tracking schemes can be used by a thread for
different types of objects.

C. Ball Segmentation and Detection

We detect and segment the ball in an image by frame dif-
ferencing the current and previous images and thresholding the
result, finding the regions in the current image that lie in the ex-
pected intensity range for the ball, performing a logical AND
operation of the regions obtained from the preceding two steps,
subjecting the resulting regions to size and shape (circularity)
checks, and choosing the detection closest to the expected po-
sition in the (rare) case of multiple detections. All these opera-
tions are performed only in a window defined by the expected
ball position and search size parameters. Most parameters, such
as the range of intensity values, expected size of the ball, size of
the search window, and the differencing threshold, are dynam-
ically updated during the course of tracking. The expected ball
position is continually updated based on the current velocity of
the ball.

Fig. 7. Overview of processing in each ball-tracking thread associated with a
camera pair.

Parameters such as the search size and range of intensity
values are initially set to conservative values. The direction of
the serve identifies and triggers the first thread. This thread
initially has no expected ball position but a relatively large
search window. We search for the ball in only one of the two
camera feeds to ensure efficiency. Once the ball is detected in
one camera, epipolar constraints determine the search region in
the other camera. Once tracking commences, the search regions
become much smaller and we use images from both cameras to
detect the ball. When the current velocity of the ball indicates
that the ball will be out of bounds of the current camera pair by
the next frame, the current 3-D ball velocity and world to image
mapping determine the positions of the ball in the next camera
pair. Thus, once the initial thread starts tracking, subsequent
threads look for the ball in well-defined search windows. The
dynamic update of segmentation and tracking parameters are
key to the success of this system.

D. Landing Spot Determination

Analysis of the 3-D ball trajectory, with appropriate interpo-
lation, yields the ball landing spot for each serve. If the 3-D
trajectory of length has time samples ( ), and the
time sample represents the last sample with a negativeve-
locity (computed from time to ), then the landing spot
is at a time which is either between and or between

and . In the first case, forward projection from the 3-D
velocity and acceleration parameters at timedetermine when
the ball reaches the ground. In the second case, backward pro-
jection from the velocity and acceleration parameters at time

determine the landing location and time. We choose one
depending on how well the velocity at the interpolated position
matches the velocity at the tracked positions. Our experiments
show that the choice is unambiguous.

E. Results and Accuracy Issues

Our system successfully tracked the ball on hundreds of
serves at the 1999 World Championship in Hannover, the 1999
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Fig. 8. Example of tracking the ball in a pair of cameras.

Paris Open, and the 2000 US Open. Fig. 8 shows an example
of ball tracking in one pair of cameras. We achieve real-time
tracking and the hand-off between cameras, or threads, is
smooth. The trajectories are stored in a database along with
other information as explained in Section IV.

We verify the accuracy of the system by several means.

• Analysis in the 2D image plane on a number of recorded
sequences shows ball tracking accuracy to be within a
pixel.

• Verification of the image to world mapping using a set of
known points shows object space errors to be under 15
mm.

• Comparison of trajectories and landing spots with broad-
cast video sequences shows landing position error within
20 mm.

• Comparison of the service speed “at the racket” from
tracking with the speed recorded by a radar gun shows
that the difference is within 10 kmph. The tracking
system estimates speed at racket as the speed of the ball
at the earliest point in its trajectory. This point in the
trajectory is first identified in a side camera view which
then drives the search for the corresponding position in
the end-camera view. Hence, there is lack of a precise
match in the times at which the two speeds are measured.

Even better measures of accuracy can be derived using an in-
dependent high speed modality for capturing ground truth data.

VII. QUERY AND VISUALIZATION INTERFACE

A. Data Selection

Once a tennis match is stored in a database in the form of
motion trajectories and domain-specific labels, the viewer can
explore a virtual version of the event. This can be done even
during a live match. To cope with the sheer volume of captured
data, a powerful mechanism of data selection allows the user to
choose only the subset of interest.

Fig. 9 shows examples of two interfaces for visualizations,
one related to player tracking (left part), and the other to ball
tracking (right part). For both player and ball tracking, the user

selects a time window (e.g., a set or game), player(s), type of
points (e.g., points won, aces), and spatial criteria (e.g., points at
the baseline). LucentVision translates these selections into SQL
queries and retrieves the corresponding trajectories. A preview
of the retrieved trajectories appears in a window on top of the
interface.

This selection procedure allows the user to formulate a
wide variety of queries, includingscore-based queries(e.g.,
all points won by a player against opponent’s serve), statis-
tics-based queries(e.g., the points a player ran fastest), or
space-based queries(e.g., all points when the player was
within five feet of the net), or hybrid spatio-temporal queries
(e.g.,all points in the first 20 minutes of the second set when
Agassi won against Sampras’ serve from behind the baseline).
In addition, LucentVision supportshistorical queries (e.g.,all
matches between Sampras and Agassi in 1999 won by Agassi).
This has become a particularly important feature for tennis
viewers, broadcasters, players, and coaches, as LucentVision
has already captured over 250 international tennis matches.

B. Virtual Mixing Console

After selecting a data subset, the user has a set of tools for
viewing and analysis. The concept of avirtual mixing console
facilitates visualization selection, smooth transition between
different visualizations, and combination of several visualiza-
tions. Selected visualizations share space in a visualization
window. Some of the visualizations currently offered include:
player motion maps, virtual replays of the ball, service landing
positions, and serve statistics, each described in more detail in
the following section. A new type of visualization can be easily
added to this scheme.

VIII. A NALYSIS AND VISUALIZATION

The purpose of LucentVision is to provide the end-user with
a variety of ways of experiencing and analyzing an event. In ad-
dition to retrieval of interesting video, discussed in Section IX,
there are numerous ways in which the data in the LucentVision
database can be visualized [37]. Although we have implemented
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Fig. 9. The data selection and visualization interface.

many interesting visualizations, we frequently formulate new
visualization schemes based on end-user feedback. The visu-
alizations discussed below have been used hundreds of times
in television broadcasts by more than 20 broadcast networks
around the world. These analyses and visualizations have also
been integrated into atptour.com, the website of the ATP (Asso-
ciation of Tennis Professionals).

A. LucentVision Maps and Statistics

The left portion of Fig. 10 shows all player motion trajecto-
ries, retrieved from the database and mapped onto the virtual
court surface, for the 1999 semifinal match between Rafter and
Kafelnikov in Cincinnati. The right portion of Fig. 10 shows a
visualization derived from the trajectory data. In thisLucentVi-
sion Map colors illustrate court coverage, red indicating the
most frequently visited areas, followed by yellow, green and
blue. The map immediately shows the general style and strategy
of the players. Both players are mostly at the baseline but Rafter
plays from behind the baseline while Kafelnikov plays more
from inside the baseline. Rafter approaches the net more often
than Kafelnikov.

Fig. 11 shows a more detailed analysis by dividing data from
a match into two subsets. The left portion of Fig. 11 shows the
map for points in a match (the World Championship in 1999)
that are won by Sampras (and lost by Agassi), while the right
portion shows points won by Agassi. A significant amount of
information can be derived from these maps. Sampras wins 56%
of the points while Agassi wins 44%. Sampras stays in the center
of the court and spends very little time on the sides when win-
ning. When losing, he spends a lot of time behind the baseline
on the backhand side. We also see that Agassi is better able to
advance from the baseline when winning than when losing.

In Fig. 11, all points in each trajectory have the same impor-
tance. More complex mapping algorithms are used to better il-
lustrate players’ strategies. Fig. 12 shows a mapping of the posi-
tion of each player at the end of a point, at the deciding moment
when the point is won or lost. The two player end positions for
each point are linked by yellow lines. In Fig. 12, the selection
is for the points won by Agassi against Sampras’ serve in the
second set of the 1999 World Championship match. The figure
indicates that Agassi won 33% of the points in the second set
for which Sampras served. The figure shows that five out of the
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Fig. 10. Player trajectory data for a match and corresponding color-coded coverage map.

Fig. 11. Maps showing court coverage of each player during points they won.

Fig. 12. (Left) End positions of players and (right) the corresponding coverage map.

eight times that Sampras lost on serve, he was “caught” at the
“T” in the middle of the court. The remaining three times, he
was close to the net. The figure also indicates that Agassi hit
most of his winning shots from the backhand side from close
to the baseline by hitting passing shots as Sampras approached
the net. More information is revealed by studying each pair of
corresponding end positions in Fig. 12. The coverage map corre-
sponding to this end position map is also seen in the same figure.

The end position map reveals a significant amount of additional
information that cannot be derived from the coverage map.

In this manner, the data selection power of LucentVision is
used to reveal, in great detail, a player’s strategy, strengths,
weaknesses, and variations in strategy against different players
and in different match situations. LucentVision also calculates
numerical statistics such as distance travelled by players, and
their average and peak running speeds.
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Fig. 13. (Left) Virtual replay of the fastest ace and (right) the serve with the highest bounce.

Fig. 14. Consecutive virtual replays of a sequence of serves.

B. Virtual Replays

Ball tracking enables other exciting visualizations. Any serve
can be replayed from any point of view at any speed. For in-
stance, a spectator can become the receiver of a serve and ap-
preciate the dynamics of the game. The left portion of Fig. 13
shows a match-point ace served by Sampras in the final against
Agassi during the 1999 ATP World Championships. As with
player tracking, a large variety of statistics are available for each
serve, including the ball’s speed at the racket, its speed after
bounce, and the height at which it reaches the receiver. The right
portion of Fig. 13 shows the serve by Agassi which reached the
greatest height at the receiver, in the same match. Comparing
even these two examples shows the wide variety of serves in a
tennis match.

C. Multiple Serve Visualizations

A sequence of superimposed serves reveal the serving style
of a player or the differences in service styles among players.
Fig. 14 shows superimposed trajectories from virtual replays of
all aces served by Marat Safin during the final of the 2000 US
Open against Pete Sampras. The viewpoint in this figure is that
of the chair umpire. The viewpoint also helps the viewer to get
an idea of how a chair umpire makes “linecalls” on whether the
ball is in or out.

Fig. 15. Maps showing serve landing spots of two players in a match.

Another way of analyzing multiple serves is aService
Landing Position Mapwhich gathers spots on the court where
the players direct their serves. Fig. 15 shows landing position
maps for the 1999 Paris Open finalists, Andre Agassi and Marat
Safin. Yellow is used for first serves and blue for second serves.
Agassi serves very precisely and consistently into the corners
of the serving box while Safin’s serves are more spread out
with all his second serves going into the center.

The service patterns can be analyzed in more detail. Fig. 16
shows two maps for Safin for the same match, showing his
serves won and lost. A careful viewer will notice that he often
lost points when serving into the center of the serving box and
far from the service line.

IX. CONTENT BASED VIDEO RETRIEVAL

LucentVision instantly indexes video from a tennis match
with semantic information about the match, as discussed in Sec-
tions IV–VI. Hence, all the data selection power described in
Section VII-A (including score-based, statistics-based, space-
based, and hybrid spatio-temporal queries), applies to retrieval
of video sequences of interest. Another major advantage of the
LucentVision system is real-time operation: content-based re-
trieval of video is possible even during a live event. The system
uses Universal Coordinated Time for temporal coordinates in all
stored motion trajectories. Hence, in a television broadcasting
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Fig. 16. Service landing positions maps for service points won and lost.

Fig. 17. Retrieving video for three aces. Left: map of landing spots of all aces served by Sampras. Second column top: selected region of the map. Framesfrom
each of the retrieved video clips corresponding to the landing spots in the selected region are shown with corresponding scores.

context, LucentVision can use time codes to retrieve relevant
video or highlights from recordings of any of the broadcast cam-
eras. LucentVision can also drive video editing systems by au-
tomatically identifying sequences of interest.

A. Activity Map Based Indexing

LucentVision introduces a new concept of “activity map
based indexing” [38] of video by combining the data selection
power discussed in Section VII-A with the visualization power
discussed in Section VIII. Spatio-temporal “activity maps”
enable a user to view summaries of activity anddiscover
interesting patterns. The user can then retrieve interesting
video clips by using theactivity maps as a graphical user
interface to the video. As discussed in Section VIII, a variety
of mapping choices are available to the user such as the court
coverage of players, end positions of players, speed of the
players, three-dimensional ball trajectories, landing positions,
and speed of the ball at the receiver.

To enable activity map based indexing, LucentVision pro-
vides a media browser in conjunction with the map interface.
The activity maps are temporal or spatio-temporal overlays on
a model of the tennis court. Users may select specific regions

of the court corresponding to activity of interest and may also
modify their choices for events and mapping scheme to further
refine their selection. Simultaneously, the media browser gives
the user access to the corresponding video.

Fig. 17 shows an example where the user has selected the
landing positions of serves as the activity mapping criterion and
“all aces served by Sampras during the match” as the event
based filtering criterion. As seen in the left portion of the figure,
the map interface displays landing spots corresponding to the 14
aces served by Sampras in this match. The user selects the region
corresponding to the left corner of the left service box, resulting
in the selection of three landing spots shown in the top picture
in the second column of Fig. 17. Frames from each of the corre-
sponding three video clips are displayed by the media browser
in the second and third columns. The video clips also show the
corresponding game score. The three selected landing spots (top
to bottom) correspond to a point in the fourth game of the second
set, fifth game in the first set, and seventh game in the first set,
respectively. Immediate and nonlinear access to these three dif-
ferent video clips is made possible by the map-based indexing.
This example demonstrates the power of combining event se-
lection and spatio-temporal activity display. Clearly, extracting
such information directly from video would be very cumber-
some.
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Fig. 18. Retrieving video for fastest action. Left: speed map of two players and user’s selection of a portion of the map. (Speed charts were derived by video
analysis.) Right: four frames from the retrieved video clip.

Fig. 19. Retrieving video for a particular trajectory. (a) Spatial coverage map for both players for the entire match. (b) Map viewed top down, with arrow indicating
the user’s selection of a portion of the map. (c) Trajectories of each player score corresponding to user’s selection. (d)–(g) Four frames from the retrieved video
clip corresponding to user’s selection, shown clockwise.

Fig. 18 shows another example where “player foot speed” is
the activity criterion, and the time window is the entire match.
This results in an activity map of player speed over the course
of the match as shown in the left side of Fig. 18. The user then
selects a portion corresponding to a peak in the speed of one of
the players. This results in the display of the score corresponding
to that portion of the graph and display of the corresponding
video in the media browser. Four of the video frames from this
video clip are shown in the right side of Fig. 18. Once again, this
is a query which would not have been possible without a visual
activity map based indexing mechanism.

Fig. 19 shows a third example of activity map based indexing.
In this case, “court coverage” is the mapping criterion, and the
time window is the entire match. This results in the coverage
map in Fig. 19(a), where the activity values are coded using four
colors. The user then changes the view to look at a flat display
of the court as in Fig. 19(b). In this case, the user notices that
Agassi has approached the net only once in the match, and se-

lects the corresponding region in the map [as indicated by the
arrow in Fig. 19(b)]. This region selection results in a new ac-
tivity map [Fig. 19(c)] showing the trajectories of both Agassi
and Sampras for that one point in the match when Agassi ap-
proached the net. The score on this image indicates the fourth
game in the first set, with Agassi serving, and the score in the
game was 40–15 and the set score was 0–3. The media browser
displays the video clip corresponding to this point. Four frames
from this video clip are shown clockwise in Figs. 19(d)–(g).
Each player traces the trajectories indicated in the image in
Fig. 19(c). The user views this video clip and sees that Agassi
lost the point that only time he approached the net!

X. DISCUSSION ANDCONCLUSIONS

LucentVision exemplifies an emerging paradigm of instantly
indexed multimedia databases that convert real world events in
real time into a form that enables a new multimedia experience
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for remote users. Components of the experience include 1) im-
mersion in a virtual environment where the viewer can choose
to view any part of the event from any desired viewpoint and
at any desired speed; 2) the ability to visualize statistics and
implicit information that is hidden in media data; 3) the ability
to search for, retrieve, compare and analyze content including
video sequences, virtual replays and a variety of new visualiza-
tions; and 4) the ability to access this information in real time
over diverse networks. LucentVision achieves this by following
the architecture and design principles of an IIMD system out-
lined in Section III, especially incorporating domain knowledge
such as event hierarchy, rules of the game, environment model,
and sensor parameters.

How does this approach extend to other sports and nonsport
applications? Moving to a different application involves a)
setting up a relational database structure based on the event
hierarchy for the domain; b) defining an environment model
and sensor placement with respect to the model; c) developing
real-time analysis modules that track dynamic activity of
objects of interest; and d) designing a query and visualization
interface that is tailored to the database structure and the do-
main. Sports applications have the advantage of a well-defined
structure which makes it easier to extend this approach. For
example, just as a tennis match is organized as a series of
“points,” baseball has a series of “pitches,” basketball and
American football have sequences of “possessions,” and cricket
has a hierarchy of “balls,” “overs,” “innings,” etc. Thus, steps
a), b), and d) above are relatively straightforward in moving
to other sports, and to even less structured domains such as
customer activity analysis in retail stores where the database
can be organized in terms of entries and exits into different
areas, time spent at different products etc.

The greatest challenge in developing IIMD systems for other
applications is step c)—developing appropriate real-time anal-
ysis techniques. Hence, a good part of this paper focussed on the
visual tracking techniques. Some of the issues are 1) tracking
multiple people/objects; 2) dealing with occlusions; 3) iden-
tifying who is who; and 4) following more detailed actions.
The player tracking approach presented here can track multiple
people in real time as discussed in Section V. For example, Fig. 6
shows tracking of multiple people in a very different application
[15]. A similar approach handles tracking in doubles situations
in tennis matches. However, the authors did not focus on doubles
due to lack of interest from broadcasters. Dealing with occlu-
sions needs further extensions to the tracking technique in Sec-
tion V, such as building appearance models during the clustering
process. Person or object identification is a significant research
problem. Camera placement and domain knowledge can solve
the problem in several sports such as tennis, cricket and base-
ball. In general, identification will have to be performed based
on appearance, numbers on uniforms, face recognition, or data
from other sensors. Active transducers are possible in some ap-
plications, greatly simplifying the problem.

This paper presented a vision of IIMD systems and a concrete
realization of the vision in LucentVision. We believe that there
is great promise in this approach while a number of interesting
research issues remain in realizing similar systems for a broad
range of applications.
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