Chapter 5 Homework Worksheet

Section 5.1

Suppose that a randomly selected used battery outputs voltages from 0 volts to 3 volts, uniformly distributed, depending on how much it has been used. Let x = random battery voltage.

For these problems use the example from the lesson video that covers a problem where we build a rectangle and find its height.

1. Graph the probability distribution for x, stating the height of the density function.

2. Given that the mean of a uniform distribution is the midpoint of its range, state the formula for the mean.

3. Compute P (x > 1.3).

4. Compute P (x < 2.5).

5. Compute P (0.8 < x < 2.7).

Section 5.2

Use your calculator (see the lesson videos) to find the following probabilities associated with the standard normal random variable, z.

1. Compute P (z < 0)	 	
2. Compute P (z < 3.18)		
3. Compute P (z > 2.49)	 	
4. Compute P ("3.05 < z < 0.73)		
5. Compute P (z < 4.06)	 	
6. Compute P (z > 2.65)		
7. Compute P (z < 2.65)	 	
8. Compute P (z > 1.27)		
9. Compute P (z < 1.27)	 	
10. Compute P ("1.27 < z < 2.65)		
11. Compute P (1.53 < z < 2.09)	 	

Use your calculator (see the lesson videos) to find the approximate z-score associated with the given area under the standard normal distribution.

16. Right tail area equal to 0.01	
17. Right tail area equal to 0.05.	
18. Right tail area equal to 0.06	
19. Right tail area equal to 0.04.	
20. Left tail area equal to 0.04.	

Section 5.3

IQ Scores are approximately normal in their distribution, with a mean equal to 100, and a standard deviation equal to approximately 15. Let x represent a randomly selected IQ score, and compute the following probabilities. Assume that x is a continuous random variable.

1. P(x < 119)

2. P(x < 81)

3. P(x > 133)

4. P(x > 77)

5. P(82 < x < 91)

6. P(110 < x < 139)

Heights of adult males are normally distributed with a mean of 69 inches, and a standard deviation of 3 inches. Use a p-value to determine whether the given adult male heights are significantly high or low, as indicated. Recall that x = a is significantly high if P(x > a) is small (less than about 5%), and x = a is significantly low if P(x < a) is small (again, less than about 5%).

11. Is x = 73.5 significantly high?

12. Is x = 78.3 significantly high?

13. Is x = 60.2 significantly low?

19. What is the probability that an adult male is greater than 74.5 inches?

The mean GPA for students at a prestigious university is normally distributed with a mean of 3.463 and a standard deviation of 0.298. Use these facts to answer the following questions.

20. Supposing that students who graduate with honors need a GPA of 3.5 or higher, what proportion of students at UCLA graduate with honors? (Hint: Proportions are the same as probabilities, so find the z-score and change it to a probability.)

24. What GPA is required to put a student in the top 10% of GPA scores?