
C
alls for the closer integration of science 
in political decision-making have 
been commonplace for decades. How-

ever, there are serious problems in the appli-
cation of science to policy — from energy to 
health and environment to education.

One suggestion to improve matters is to 
encourage more scientists to get involved in 
politics. Although laudable, it is unrealistic 
to expect substantially increased political 
involvement from scientists. Another prop-
osal is to expand the role of chief scientific 
advisers1, increasing their number, availabil-
ity and participation in political processes. 
Neither approach deals with the core prob-
lem of scientific ignorance among many who 
vote in parliaments. 

Perhaps we could teach science to politi-
cians? It is an attractive idea, but which busy 
politician has sufficient time? In practice, 
policy-makers almost never read scientific 
papers or books. The research relevant to the 
topic of the day — for example, mitochon-
drial replacement, bovine tuberculosis or 
nuclear-waste disposal — is interpreted for 
them by advisers or external advocates. And 
there is rarely, if ever, a beautifully designed 
double-blind, randomized, replicated, con-
trolled experiment with a large sample size 
and unambiguous conclusion that tackles 
the exact policy issue. 

In this context, we suggest that the imme-
diate priority is to improve policy-makers’ 
understanding of the imperfect nature of 
science. The essential skills are to be able to 
intelligently interrogate experts and advisers, 
and to understand the quality, limitations 
and biases of evidence. We term these inter-
pretive scientific skills. These skills are more 
accessible than those required to understand 
the fundamental science itself, and can form 
part of the broad skill set of most politicians. 

To this end, we suggest 20 concepts that 
should be part of the education of civil serv-
ants, politicians, policy advisers and jour-
nalists — and anyone else who may have to 
interact with science or scientists. Politicians 
with a healthy scepticism of scientific advo-
cates might simply prefer to arm themselves 
with this critical set of knowledge. 

We are not so naive as to believe that 
improved policy decisions will automati-
cally follow. We are fully aware that scien-
tific judgement itself is value-laden, and 
that bias and context are integral to how 
data are collected and interpreted. What we 
offer is a simple list of ideas that could help 
decision-makers to parse how evidence can 
contribute to a decision, and potentially 
to avoid undue influence by those with 
vested interests. The harder part — the 
social acceptability of different policies — 
remains in the hands of politicians and the 
broader political process.

Of course, others will have slightly 
different lists. Our point is that a wider 
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understanding of these 20 concepts by 
society would be a marked step forward. 

Differences and chance cause variation. 
The real world varies unpredictably. Science 
is mostly about discovering what causes the 
patterns we see. Why is it hotter this decade 
than last? Why are there more birds in some 
areas than others? There are many explana-
tions for such trends, so the main challenge of 
research is teasing apart the importance of the 
process of interest (for example, the effect of 
climate change on bird populations) from the 
innumerable other sources of variation (from 
widespread changes, such as agricultural 
intensification and spread of invasive species, 
to local-scale processes, such as the chance 
events that determine births and deaths). 

No measurement is exact. Practically all 
measurements have some error. If the meas-
urement process were repeated, one might 
record a different result. In some cases, the 
measurement error might be large compared 
with real differences. Thus, if you are told 
that the economy grew by 0.13% last month, 
there is a moderate chance that it may actu-
ally have shrunk. Results should be pre-
sented with a precision that is appropriate 
for the associated error, to avoid implying 
an unjustified degree of accuracy. 

Bias is rife. Experimental design or measur-
ing devices may produce atypical results in 
a given direction. For example, determin-
ing voting behaviour by asking people on 
the street, at home or through the Internet 
will sample different proportions of the 
population, and all may give different results. 
Because studies that report ‘statistically 
significant’ results are more likely to be writ-
ten up and published, the scientific literature 
tends to give an exaggerated picture of the 

magnitude of problems or the effectiveness 
of solutions. An experiment might be biased 
by expectations: participants provided with 
a treatment might assume that they will 
experience a difference and so might behave 
differently or report an effect. Researchers 
collecting the results can be influenced by 
knowing who received treatment. The ideal 
experiment is double-blind: neither the par-
ticipants nor those collecting the data know 
who received what. This might be straight-
forward in drug trials, but it is impossible 
for many social studies. Confirmation bias 
arises when scientists find evidence for a 
favoured theory and then become insuffi-
ciently critical of their own results, or cease 
searching for contrary evidence. 

Bigger is usually better for sample size. 
The average taken from a large number of 
observations will usually be more informa-
tive than the average taken from a smaller 
number of observations. That is, as we accu-
mulate evidence, our knowledge improves. 
This is especially important when studies are 
clouded by substantial amounts of natural 
variation and measurement error. Thus, the 
effectiveness of a drug treatment will vary 
naturally between subjects. Its average effi-
cacy can be more reliably and accurately esti-
mated from a trial with tens of thousands of 
participants than from one with hundreds. 

Correlation does not imply causation. It is 
tempting to assume that one pattern causes 
another. However, the correlation might be 
coincidental, or it might be a result of both 
patterns being caused by a third factor — 
a ‘confounding’ or ‘lurking’ variable. For 
example, ecologists at one time believed that 
poisonous algae were killing fish in estuar-
ies; it turned out that the algae grew where 
fish died. The algae did not cause the deaths2.

Regression to the mean can mislead. 
Extreme patterns in data are likely to be, at 
least in part, anomalies attributable to chance 
or error. The next count is likely to be less 
extreme. For example, if speed cameras are 
placed where there has been a spate of acci-
dents, any reduction in the accident rate can-
not be attributed to the camera; a reduction 
would probably have happened anyway. 

Extrapolating beyond the data is risky. 
Patterns found within a given range do not 
necessarily apply outside that range. Thus, 
it is very difficult to predict the response of 
ecological systems to climate change, when 
the rate of change is faster than has been expe-
rienced in the evolutionary history of existing 
species, and when the weather extremes may 
be entirely new.

Beware the base-rate fallacy. The ability  
of an imperfect test to identify a condi-
tion depends upon the likelihood of that 
condition occurring (the base rate). For 
example, a person might have a blood test 
that is ‘99% accurate’ for a rare disease and 
test positive, yet they might be unlikely to 
have the disease. If 10,001 people have the 
test, of whom just one has the disease, that 
person will almost certainly have a positive 
test, but so too will a further 100 people (1%) 
even though they do not have the disease. 
This type of calculation is valuable when  
considering any screening procedure, say for  
terrorists at airports. 

Controls are important. A control group 
is dealt with in exactly the same way as the 
experimental group, except that the treat-
ment is not applied. Without a control, it is 
difficult to determine whether a given treat-
ment really had an effect. The control helps 
researchers to be reasonably sure that there 

Science and policy have collided on contentious issues such as bee declines, nuclear power and the role of badgers in bovine tuberculosis.
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are no confounding variables affecting the 
results. Sometimes people in trials report 
positive outcomes because of the context or 
the person providing the treatment, or even 
the colour of a tablet3. This underlies the 
importance of comparing outcomes with a 
control, such as a tablet without the active 
ingredient (a placebo). 

Randomization avoids bias. Experiments 
should, wherever possible, allocate individ-
uals or groups to interventions randomly. 
Comparing the educational achievement 
of children whose parents adopt a health 
programme with that of children of parents 
who do not is likely to suffer from bias (for 
example, better-educated families might be 
more likely to join the programme). A well-
designed experiment would randomly select 
some parents to receive the programme 
while others do not. 

Seek replication, not pseudoreplication. 
Results consistent across many studies, 
replicated on independent populations, are 
more likely to be solid. The results of several 
such experiments may be combined in a sys-
tematic review or a meta-analysis to provide 
an overarching view of the topic with poten-
tially much greater statistical power than any 
of the individual studies. Applying an inter-
vention to several individuals in a group, say 
to a class of children, might be misleading 
because the children will have many features 
in common other than the intervention. The 
researchers might make the mistake of ‘pseu-
doreplication’ if they generalize from these 
children to a wider population that does 
not share the same commonalities. Pseu-
doreplication leads to unwarranted faith in 
the results. Pseudoreplication of studies on 
the abundance of cod in the Grand Banks in 
Newfoundland, Canada, for example, con-
tributed to the collapse of what was once the 
largest cod fishery in the world4.

Scientists are human. Scientists have a 
vested interest in promoting their work, 
often for status and further research funding, 
although sometimes for direct financial gain. 
This can lead to selective reporting of results 
and occasionally, exaggeration. Peer review 
is not infallible: journal editors might favour 
positive findings and newsworthiness. Mul-
tiple, independent sources of evidence and 
replication are much more convincing. 

Significance is significant. Expressed as P, 
statistical significance is a measure of how 
likely a result is to occur by chance. Thus 
P = 0.01 means there is a 1-in-100 probability 
that what looks like an effect of the treatment 
could have occurred randomly, and in truth 
there was no effect at all. Typically, scientists 
report results as significant when the P-value 
of the test is less than 0.05 (1 in 20). 

Separate no effect from non-significance. 
The lack of a statistically significant result 
(say a P-value > 0.05) does not mean that 
there was no underlying effect: it means that 
no effect was detected. A small study may 
not have the power to detect a real differ-
ence. For example, tests of cotton and potato 
crops that were genetically modified to pro-
duce a toxin to protect them from damaging 
insects suggested that there were no adverse 
effects on beneficial insects such as pollina-
tors. Yet none of the experiments had large 
enough sample sizes to detect impacts on 
beneficial species had there been any5. 

Effect size matters. Small responses are less 
likely to be detected. A study with many rep-
licates might result in a statistically signifi-
cant result but have a small effect size (and 
so, perhaps, be unimportant). The impor-

tance of an effect size 
is a biological, physi-
cal or social question, 
and not a statistical 
one. In the 1990s, 
the editor of the US 

journal Epidemiology asked authors to stop 
using statistical significance in submitted 
manuscripts because authors were routinely 
misinterpreting the meaning of significance 
tests, resulting in ineffective or misguided 
recommendations for public-health policy6. 

Study relevance limits generalizations. 
The relevance of a study depends on how 
much the conditions under which it is done 
resemble the conditions of the issue under 
consideration. For example, there are limits 
to the generalizations that one can make from 
animal or laboratory experiments to humans. 

Feelings influence risk perception. Broadly, 
risk can be thought of as the likelihood of an 
event occurring in some time frame, multi-
plied by the consequences should the event 
occur. People’s risk perception is influenced 
disproportionately by many things, includ-
ing the rarity of the event, how much control 
they believe they have, the adverseness of the 
outcomes, and whether the risk is voluntar-
ily or not. For example, people in the United 
States underestimate the risks associated 
with having a handgun at home by 100-fold, 
and overestimate the risks of living close to 
a nuclear reactor by 10-fold7. 

Dependencies change the risks. It is pos-
sible to calculate the consequences of indi-
vidual events, such as an extreme tide, heavy 
rainfall and key workers being absent. How-
ever, if the events are interrelated, (for exam-
ple a storm causes a high tide, or heavy rain 
prevents workers from accessing the site) 
then the probability of their co-occurrence 
is much higher than might be expected8. 
The assurance by credit-rating agencies 

that groups of subprime mortgages had an 
exceedingly low risk of defaulting together 
was a major element in the 2008 collapse of 
the credit markets. 

Data can be dredged or cherry picked. 
Evidence can be arranged to support one 
point of view. To interpret an apparent asso-
ciation between consumption of yoghurt 
during pregnancy and subsequent asthma in 
offspring9, one would need to know whether 
the authors set out to test this sole hypoth-
esis, or happened across this finding in a 
huge data set. By contrast, the evidence for 
the Higgs boson specifically accounted for 
how hard researchers had to look for it — the 
‘look-elsewhere effect’. The question to ask is: 
‘What am I not being told?’ 

Extreme measurements may mislead. 
Any collation of measures (the effective-
ness of a given school, say) will show vari-
ability owing to differences in innate ability 
(teacher competence), plus sampling (chil-
dren might by chance be an atypical sample 
with complications), plus bias (the school 
might be in an area where people are unu-
sually unhealthy), plus measurement error 
(outcomes might be measured in different 
ways for different schools). However, the 
resulting variation is typically interpreted 
only as differences in innate ability, ignoring 
the other sources. This becomes problematic 
with statements describing an extreme out-
come (‘the pass rate doubled’) or comparing 
the magnitude of the extreme with the mean 
(‘the pass rate in school x is three times the 
national average’) or the range (‘there is an 
x-fold difference between the highest- and 
lowest-performing schools’). League tables, 
in particular, are rarely reliable summaries of 
performance. ■
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“The question 
to ask is: ‘What 
am I not being 
told?’”
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