# Chapter 14

STAGE 4: HYPOTHESIS TESTING



# **Learning Objectives**

#### Understand . . .

- The nature and logic of hypothesis testing.
- A statistically significant difference
- The six-step hypothesis testing procedure.
- The differences between parametric and nonparametric tests and when to use each.
- The factors that influence the selection of an appropriate test of statistical significance.
- How to interpret the various test statistics.

# **Hypothesis Testing**



#### **Reasoning and Hypotheses**

Inductions are an inferential leap from the evidence presented.





#### **Reasoning and Hypotheses**

Deductions are only as good as the premises on which they are based.





#### **Statistical Procedures**



# Hypothesis Testing and the Research Process



#### The "Ah-Ha" Moment



# **Approaches to Hypothesis Testing**

#### Classical statistics

- Objective view of probability
- Established
   hypothesis is rejected
   or fails to be rejected
- Analysis based on sample data

#### **Bayesian statistics**

- Extension of classical approach
- Analysis based on sample data
- Also considers established subjective probability estimates

# Significance & Hypotheses



## Null vs. Alternative Hypotheses



#### Null

- $H_0$ :  $\mu = 60 \text{ mpg}$
- $H_0$ :  $\mu \leq 60$  mpg
- $H_0$ :  $\mu \ge 60 \text{ mpg}$

#### **Alternative**

- $H_A$ :  $\mu \neq 60 \text{ mpg}$
- $H_A$ :  $\mu > 60 \text{ mpg}$
- $H_A$ :  $\mu$  < 60 mpg

# **Two-Tailed Test of Significance**



# **One-Tailed Test of Significance**



#### **Decision Rule**

Take no corrective action if the analysis shows that one cannot reject the null hypothesis.

#### **Statistical Decisions**



#### **Probability of Making a Type I Error**



#### **Critical Values**

Z = 1.96 (significance level = .05)

 $\bar{X}_c$  = the critical value of the sample mean

 $\mu$  = the population value stated in  $H_0 = 50$ 

 $\sigma_X$  = the standard error of a distribution of means of samples of 25

$$Z = \frac{\overline{X} - \mu}{\sigma \overline{X}}$$

$$-1.96 = \frac{\overline{X}_c - 50}{2}$$

$$\overline{X}_c = 46.08$$

$$1.96 = \frac{\overline{X}_c - 50}{2}$$

$$\overline{X}_c = 53.92$$

#### **Probability of Making A Type I Error**



# Factors Affecting Probability of Committing a $\beta$ Error

True value of parameter

Alpha level selected

One or two-tailed test used

Sample standard deviation

Sample size

#### **Probability of Making A Type II Error**



# **Statistical Testing Procedures**



# **Tests of Significance**



#### **Assumptions for Using Parametric Tests**



# **Probability Plot**



# **Probability Plot**



# **Probability Plot**



# **Advantages of Nonparametric Tests**



#### **How to Select a Test**



#### **Recommended Statistical Techniques**

|                       |                                                                                     | Two-Sample Tests                                                            |                                                                                                                | k-Sample Tests                                       |                                                                                                      |
|-----------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Measureme<br>nt Scale | One-Sample<br>Case                                                                  | Related<br>Samples                                                          | Independent<br>Samples                                                                                         | Related<br>Samples                                   | Independent<br>Samples                                                                               |
| Nominal               | <ul> <li>Binomial</li> <li>x<sup>2</sup> one-sample test</li> </ul>                 | McNemar                                                                     | <ul> <li>Fisher exact<br/>test</li> <li>x² two-<br/>samples test</li> </ul>                                    | • Cochran Q                                          | • x² for k<br>samples                                                                                |
| Ordinal               | <ul> <li>Kolmogorov-<br/>Smirnov one-<br/>sample test</li> <li>Runs test</li> </ul> | <ul> <li>Sign test</li> <li>Wilcoxon<br/>matched-<br/>pairs test</li> </ul> | <ul> <li>Median test</li> <li>Mann- Whitney U</li> <li>Kolmogorov- Smirnov</li> <li>Wald- Wolfowitz</li> </ul> | • Friedman<br>two-way<br>ANOVA                       | <ul> <li>Median         extension</li> <li>Kruskal-         Wallis one-         way ANOVA</li> </ul> |
| Interval and<br>Ratio | • t-test • Z test                                                                   | • t-test for paired samples                                                 | • t-test • Z test                                                                                              | <ul> <li>Repeated-<br/>measures<br/>ANOVA</li> </ul> | • One-way ANOVA • n-way ANOVA                                                                        |

# **Questions Answered by One-Sample Tests**



Difference between observed and expected frequencies?

Difference between observed and expected proportions?

Significant difference between some measure of central tendency and the population parameter?

#### **Parametric Tests**



# One-Sample t-Test Example

| Null                | Ho: = 50 mpg      |  |
|---------------------|-------------------|--|
| Statistical test    | t <i>-test</i>    |  |
| Significance level  | .05, n=100        |  |
| Calculated value    | 1.786             |  |
| Critical test value | 1.66              |  |
|                     | (from Appendix C, |  |
|                     | Exhibit C-2)      |  |

# One Sample Chi-Square Test Example

| Living Arrangement               | Intend<br>to Join | Number<br>Interviewed | Percent<br>(no. interviewed/200) | Expected<br>Frequencies<br>(percent x 60) |
|----------------------------------|-------------------|-----------------------|----------------------------------|-------------------------------------------|
| Dorm/fraternity                  | 16                | 90                    | 45                               | 27                                        |
| Apartment/rooming house, nearby  | 13                | 40                    | 20                               | 12                                        |
| Apartment/rooming house, distant | 16                | 40                    | 20                               | 12                                        |
| Live at home                     | 15                | 30                    | 15<br>——                         | 9                                         |
| Total                            | 60                | 200                   | 100                              | 60                                        |

# One-Sample Chi-Square Example

| Null                | Ho: 0 = E                      |  |  |
|---------------------|--------------------------------|--|--|
| Statistical test    | One-sample chi-square          |  |  |
| Significance level  | .05                            |  |  |
| Calculated value    | 9.89                           |  |  |
| Critical test value | 7.82                           |  |  |
|                     | (from Appendix C, Exhibit C-3) |  |  |

### **Two-Sample Parametric Tests**

$$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)0}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

# **Two-Sample t-Test Example**

|                      | A Group                  | B Group         |
|----------------------|--------------------------|-----------------|
| Average hourly sales | X <sub>1</sub> = \$1,500 | X2 =<br>\$1,300 |
| Standard deviation   | $s_1 = 225$              | s2 = 251        |

# **Two-Sample t-Test Example**

| Null                | Ho: A sales = B sales          |  |  |  |
|---------------------|--------------------------------|--|--|--|
| Statistical test    | t <i>-test</i>                 |  |  |  |
| Significance level  | .05 (one-tailed)               |  |  |  |
| Calculated value    | 1.97, d.f. = 20                |  |  |  |
| Critical test value | 1.725                          |  |  |  |
|                     | (from Appendix C, Exhibit C-2) |  |  |  |

# Two-Sample Nonparametric Tests: Chi-Square

|        |                                              | On-the-Jol | On-the-Job-Accident |           |  |
|--------|----------------------------------------------|------------|---------------------|-----------|--|
|        | Cell Designation<br>Count<br>Expected Values | Yes        | No                  | Row Total |  |
| Smoker |                                              | 1,1        | 1,2                 |           |  |
|        | Heavy Smoker                                 | 12,        | 4                   | 16        |  |
|        |                                              | 8.24       | 7.75                |           |  |
|        |                                              | 2,1        | 2,2                 |           |  |
|        | Moderate                                     | 9          | 6                   | 15        |  |
|        |                                              | 7.73       | 7.27                |           |  |
|        |                                              | 3,1        | 3,2                 |           |  |
|        | Nonsmoker                                    | 13         | 22                  | 35        |  |
|        |                                              | 18.03      | 16.97               |           |  |
|        | Column Total                                 | 34         | 32                  | 66        |  |

# Two-Sample Chi-Square Example

| Null                | There is no difference in distribution channel for age categories. |  |  |
|---------------------|--------------------------------------------------------------------|--|--|
| Statistical test    | Chi-square                                                         |  |  |
| Significance level  | .05                                                                |  |  |
| Calculated value    | 6.86, d.f. = 2                                                     |  |  |
| Critical test value | 5.99                                                               |  |  |
|                     | (from Appendix C, Exhibit C-3)                                     |  |  |

#### **SPSS Cross-Tabulation Procedure**

|                                                                                                                                                                        | INCOME BY POSSESSION OF MBA |            |       |            |              |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------|-------|------------|--------------|--|--|--|
|                                                                                                                                                                        | Count                       | MBA        |       |            |              |  |  |  |
|                                                                                                                                                                        | Count                       | Yes        | No    | Row        |              |  |  |  |
| INCOME                                                                                                                                                                 |                             | Ţ          | 2     | Total      |              |  |  |  |
| INCOME                                                                                                                                                                 | High l                      | 30         | 30    | 60<br>60.0 |              |  |  |  |
|                                                                                                                                                                        | Low 2                       | 70         | 30    | 40<br>40.0 |              |  |  |  |
|                                                                                                                                                                        | Column<br>Total             | 40<br>40.0 | 60.0  | 700.0      |              |  |  |  |
| Chi-Square                                                                                                                                                             |                             |            | Value | D.F.       | Significance |  |  |  |
| Pearson Continuity Correction Likelihood Ratio Mantel-Haenszel Minimum Expected Frequency: 16.000  6.25000 L .01242 L.25000 L .02192 L.43786 L .02192 L.43786 L .01247 |                             |            |       |            |              |  |  |  |

## **Two-Related-Samples Tests**



## Sales Data for Paired-Samples t-Test

| Company | Sales<br>Year<br>2 | <i>Sales</i><br>Year 1 | Difference D       | $D^2$          |
|---------|--------------------|------------------------|--------------------|----------------|
| GM      | 126932             | 123505                 | 3427               | 11744329       |
| GE      | 54574              | 49662                  | 4912               | 24127744       |
| Exxon   | 86656              | 78944                  | 7712               | 59474944       |
| IBM     | 62710              | 59512                  | 3192               | 10227204       |
| Ford    | 96146              | 92300                  | 3846               | 14971716       |
| AT&T    | 36112              | 35173                  | 939                | 881721         |
| Mobil   | 50220              | 48111                  | 2109               | 4447881        |
| DuPont  | 35099              | 32427                  | 2632               | 6927424        |
| Sears   | 53794              | 49975                  | 3819               | 14584761       |
| Amoco   | 23966              | 20779                  | 3187               | 10156969       |
| Total   |                    |                        | $\Sigma D = 35781$ | ΣD = 157364693 |

# Paired-Samples t-Test Example

| Null                | Year 1 sales = Year 2 sales    |
|---------------------|--------------------------------|
| Statistical test    | Paired sample t-test           |
| Significance level  | .01                            |
| Calculated value    | 6.28, d.f. = 9                 |
| Critical test value | 3.25                           |
|                     | (from Appendix C, Exhibit C-2) |

#### SPSS Output for Paired-Samples t-Test

| t-tosts         | for  | naired | samples |
|-----------------|------|--------|---------|
| <i>l</i> -cescs | i Ur | patred | 29mb162 |

| Variable                   | Number<br>of Cases    | Mean               |       | andard<br>⁄iation  | Stand<br>Erro |                       |                 |
|----------------------------|-----------------------|--------------------|-------|--------------------|---------------|-----------------------|-----------------|
| Year 2 Sale<br>Year 1 Sale |                       | 62620.9<br>59038-8 |       | 777.649<br>172.871 | 10048<br>9836 | _                     |                 |
| (Difference<br>Mean)       | Standard<br>Deviation | Standard<br>Error  | Corr. | 2-tail<br>Prob.    | t<br>Value    | Degrees of<br>Freedom | 2-tail<br>Prob. |
| 3582.1000                  | 1803.159              | 570.209            | .999  | .000               | 6.28          | ٩                     | .000            |

#### Related Samples Nonparametric Tests: McNemar Test

| Before       | After<br>Do Not Favor | After<br>Favor |
|--------------|-----------------------|----------------|
| Favor        | A                     | В              |
| Do Not Favor | C                     | D              |

#### Related Samples Nonparametric Tests: McNemar Test

| Before       | After<br>Do Not Favor | After<br>Favor |
|--------------|-----------------------|----------------|
| Favor        | A=10                  | B=90           |
| Do Not Favor | C=60                  | D=40           |

#### k-Independent-Samples Tests: ANOVA

Tests the null hypothesis that the means of three or more populations are equal.

One-way: Uses a single-factor, fixed-effects model to compare the effects of a treatment or factor on a continuous dependent variable.

# **ANOVA Example**

| Model Summary    |      |                   |             |         |                |  |  |
|------------------|------|-------------------|-------------|---------|----------------|--|--|
| Source           | d.f. | Sum of<br>Squares | Mean Square | F Value | p <i>Value</i> |  |  |
| Model (airline)  | 2    | 11644.033         | 5822.017    | 28.304  | 0.0001         |  |  |
| Residual (error) | 57   | 11724.550         | 205.694     |         |                |  |  |
| Total            | 59   | 23368.583         |             |         |                |  |  |

|                   | Count | Mean   | Std. Dev. | Std. Error |
|-------------------|-------|--------|-----------|------------|
| Lufthansa         | 20    | 38.950 | 14.006    | 3.132      |
| Malaysia Airlines | 20    | 58.900 | 15.089    | 3.374      |
| Cathay Pacific    | 20    | 72.900 | 13.902    | 3.108      |

All data are hypothetical

# **ANOVA Example Continued**

| Null                | $\mu A 1 = \mu A 2 = \mu A 3$  |
|---------------------|--------------------------------|
| Statistical test    | ANOVA and F ratio              |
| Significance level  | .05                            |
| Calculated value    | 28.304, d.f. = 2, 57           |
| Critical test value | 3.16                           |
|                     | (from Appendix C, Exhibit C-9) |

## Post Hoc: Scheffe's S Multiple Comparison Procedure

|                      | Verses               | Diff   | Crit.<br>Diff. | p Value |
|----------------------|----------------------|--------|----------------|---------|
| Lufthansa            | Malaysia<br>Airlines | 19,950 | 11.400         | .0002   |
|                      | Cathay<br>Pacific    | 33.950 | 11.400         | .0001   |
| Malaysia<br>Airlines | Cathay<br>Pacific    | 14.000 | 11.400         | .0122   |

# **Multiple Comparison Procedures**

| Test               | Complex<br>Comparisons | Pairwise<br>Comparisons | Equal<br>n's<br>Only | <i>Unequal</i><br>n's | Equal<br>Variances<br>Assumed | Unequal<br>Variances<br>Not<br>Assumed |
|--------------------|------------------------|-------------------------|----------------------|-----------------------|-------------------------------|----------------------------------------|
| Fisher LSD         | X                      |                         |                      | X                     | X                             |                                        |
| Bonferroni         | X                      |                         | X                    | X                     |                               |                                        |
| Tukey HSD          | X                      |                         | X                    |                       | X                             |                                        |
| Tukey-Kramer       | X                      |                         |                      | X                     | X                             |                                        |
| Games-Howell       | X                      |                         |                      | X                     |                               | Χ                                      |
| Tamhane T2         | X                      |                         |                      | X                     |                               | Χ                                      |
| Scheffé S          |                        | X                       | X                    | X                     | X                             |                                        |
| Brown-<br>Forsythe |                        | X                       | X                    | X                     |                               | X                                      |
| Newman-Keuls       | X                      |                         |                      |                       | X                             |                                        |
| Duncan             | X                      |                         |                      |                       | X                             |                                        |
| Dunnet's T3        |                        |                         |                      |                       |                               | Χ                                      |
| Dunnet's C         |                        |                         |                      |                       |                               | X                                      |

#### **ANOVA Plots**





# Two-Way ANOVA Example

| Model Summary             |      |                |                |         |         |
|---------------------------|------|----------------|----------------|---------|---------|
| Source                    | d.f. | Sum of Squares | Mean<br>Square | F Value | p Value |
| Airline                   | 2    | 11644.033      | 5822.017       | 39.178  | 0.0001  |
| Seat selection            | 1    | 3182.817       | 3182.817       | 21.418  | 0.0001  |
| Airline by seat selection | 2    | 517.033        | 258.517        | 1.740   | 0.1853  |
| Residual                  | 54   | 8024.700       | 148.606        |         |         |

|                                  | Means Table Ef |        |           |            |
|----------------------------------|----------------|--------|-----------|------------|
|                                  | Count          | Mean   | Std. Dev. | Std. Error |
| Lufthansa<br>economy             | 10             | 35.600 | 12.140    | 3.839      |
| Lufthansa<br>business            | 10             | 42.300 | 15.550    | 4.917      |
| Malaysia<br>Airlines<br>economy  | 10             | 48.500 | 12.501    | 3.953      |
| Malaysia<br>Airlines<br>business | 10             | 69.300 | 9.166     | 2.898      |
| Cathay<br>Pacific<br>economy     | 10             | 64.800 | 13.037    | 4.123      |
| Cathay<br>Pacific<br>business    | 10             | 81.000 | 9.603     | 3.037      |

All data are hypothetical

#### **Two-way Analysis of Variance Plots**





## k-Related-Samples Tests

More than two levels in grouping factor

Observations are matched

Data are interval or ratio



| _               |      |                   |                |         |                |
|-----------------|------|-------------------|----------------|---------|----------------|
| Source          | d.f. | Sum of<br>Squares | Mean<br>Square | F Value | p <i>Value</i> |
| Airline         | 2    | 3552735.50        | 17763.775      | 67.199  | 0.0001         |
| Subject (group) | 57   | 15067.650         | 264.345        |         |                |
| Ratings         | 1    | 625.633           | 625.633        | 14.318  | 0.0004         |
| Ratings by air  | 2    | 2061.717          | 1030.858       | 23.592  | 0.0001         |
| Ratings by subj | 57   | 2490.650          | 43.696         |         |                |

| Means Table by Airline      |       |        |           |            |
|-----------------------------|-------|--------|-----------|------------|
|                             | Count | Mean   | Std. Dev. | Std. Error |
| Rating 1, Lufthansa         | 20    | 38.950 | 14.006    | 3.132      |
| Rating 1, Malaysia Airlines | 20    | 58.900 | 15.089    | 3.374      |
| Rating 1, Cathay Pacific    | 20    | 72.900 | 13.902    | 3.108      |
| Rating 2, Lufthansa         | 20    | 32.400 | 8.268     | 1.849      |
| Rating 2, Malaysia Airlines | 20    | 72.250 | 10.572    | 2.364      |
| Rating 2, Cathay Pacific    | 20    | 79.800 | 11.265    | 2.519      |

| Means Table Effect: Ratings     |    |        |        |       |  |  |
|---------------------------------|----|--------|--------|-------|--|--|
| Count Mean Std. Dev. Std. Error |    |        |        |       |  |  |
| Rating 1                        | 60 | 56.917 | 19.902 | 2.569 |  |  |
| Rating 2                        | 60 | 61.483 | 23.208 | 2.996 |  |  |

All data are hypothetical.

#### Repeated Measures ANOVA Plot



\*All data are hypothetical.

### **Key Terms**

- a priori contrasts
- Alternative hypothesis
- Analysis of variance (ANOVA)
- Bayesian statistics
- Chi-square test
- Classical statistics
- Critical value
- F ratio
- Inferential statistics
- K-independent-samples tests

- K-related-samples tests
- Level of significance
- Mean square
- Multiple comparison tests (range tests)
- Nonparametric tests
- Normal probability plot
- Null hypothesis
- Observed significance level
- One-sample tests
- One-tailed test

### **Key Terms**

- p value
- Parametric tests
- Power of the test
- Practical significance
- Region of acceptance
- Region of rejection
- Statistical significance
- t distribution
- Trials
- t-test

- Two-independentsamples tests
- Two-related-samples tests
- Two-tailed test
- Type I error
- Type II error
- Z distribution
- Z test