Econometrics 120C: Threats to the Validity of a Regression Study

Kaspar Wüthrich References: Stock and Watson Ch 6 and 9, EVH Section F

This lecture will be recorded and made available asynchronously via Canvas.

Introduction

• It is hard to resists the temptation of using regression analysis to estimate causal effects based on the model

$$Y_i = \beta_0 + \beta_1 X_i + u_i \tag{1}$$

where u_i contains all other possible variables that determine Y_i .

- The biggest hurdle to causal inference is that variables in *u_i* are possibly correlated with *X_i*.
- Note that such correlation means that the OLS assumption $E[u_i | X_i] = 0$ is incorrect.
- Here we look at different scenarios, all of which render OLS inconsistent.

Threats to internal validity

There are many possible reasons for why X_i could be correlated with u_i

- 1. Omitted variable bias (OVB)
- 2. Measurement error
- 3. Simultaneous causality
- 4. Sample selection bias
- 5. (Functional form misspecification)

6. ...

Each of these, if present, leads to a violation of the key assumption that $E[u_i | X_i] = 0$. The consequence is that the OLS estimator $\hat{\beta}_1$ is generally inconsistent for the true parameter of interest β_1 . Suppose the true model is

$$Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{2i} + u_{i}$$
⁽²⁾

where we assume that $E[u_i | X_{1i}, X_{2i}] = 0$. When X_{2i} is omitted, we have

$$Y_i = \beta_0 + \beta_1 X_{1i} + e_i$$
, where $e_i = \beta_2 X_{2i} + u_i$ (3)

In this case, the probability limit of the OLS estimator based on the "short" model (3) is

$$\hat{\beta}_{1}^{short} \xrightarrow{p} \frac{Cov(Y_{i}, X_{1i})}{Var(X_{1i})} = \frac{Cov(\beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + u_{i}, X_{1i})}{Var(X_{1i})}$$
$$= \frac{\beta_{1}Var(X_{1i}) + \beta_{2}Cov(X_{2i}, X_{1i})}{Var(X_{1i})}$$
$$= \beta_{1} + \beta_{2}\frac{Cov(X_{2i}, X_{1i})}{Var(X_{1i})} \neq \beta_{1}$$

Note that $Cov(X_{2i}, X_{1i})/Var(X_{1i})$ is nothing else than the population regression coefficient γ_1 in the following auxiliary regression model

$$X_{2i} = \gamma_0 + \gamma_1 X_{1i} + r_i.$$

Therefore, we often say that:

short = long + effect of omitted \times regression of omitted on included

OVB: discussion

- The OLS estimator $\hat{\beta}_1^{short}$ based on the "short" regression model (3) will generally not be consistent for the true β_1 .
- The bias can be written as

$$\beta_2 \frac{\operatorname{Cov}(X_{2i}, X_{1i})}{\operatorname{Var}(X_{1i})} = \beta_2 \operatorname{Corr}(X_{1i}, X_{2i}) \frac{\sqrt{\operatorname{Var}(X_{2i})}}{\sqrt{\operatorname{Var}(X_{1i})}}.$$

- Therefore, the sign of the bias depends on the correlation between omitted (X_{2i}) and included (X_{1i})
- This is a very useful insight since it allows us to gauge the sign of the bias of OLS even if we do not observe X_{2i} in our data set.
- Note that the bias is zero (i) if Corr(X_{1i}, X_{2i}) = 0 and/or if (ii) β₂ = 0. How can you interpret these two cases?

OVB: schooling example

Labor economists are very often interested in estimating returns to education. We usually think about wages as being determined by ability and schooling (abstracting from other characteristics):

$$\underbrace{wage_{i}}_{=Y_{i}} = \beta_{0} + \beta_{1} \underbrace{schooling_{i}}_{=X_{1i}} + \beta_{2} \underbrace{ability_{i}}_{=X_{2i}} + u_{i}$$

Unfortunately, ability is very hard to measure and almost always unobserved (i.e., not in our data set). Thus, we can only estimate the short model:

$$wage_i = \beta_0 + \beta_1 schooling_i + e_i$$

The omitted variable bias tells us that

$$\hat{\beta}_{1}^{short} \xrightarrow{p} \beta_{1} + \beta_{2} Corr(schooling_{i}, ability_{i}) \frac{\sqrt{Var(ability_{i})}}{\sqrt{Var(schooling_{i})}}$$

One would expect that $\beta_2 > 0$ and $Corr(schooling_i, ability_i) > 0$. Therefore, $\hat{\beta}_1^{short}$ overestimates the wage returns.

• Suppose we want to estimate

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

but instead of the true X_i we only observe a noisy measurement \tilde{X}_i

- Example:
 - Y_i: indicator for lung cancer
 - X_i: true cigarette consumption
 - \tilde{X}_i : self-reported cigarette consumption

Measurement error: theory

• Written in terms of \tilde{X}_i , the population regression equation becomes

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

= $\beta_0 + \beta_1 \tilde{X}_i + [\beta_1 (X_i - \tilde{X}_i) + u_i]$
= $\beta_0 + \beta_1 \tilde{X}_i + v_i$

where $v_i = [eta_1(X_i - ilde{X}_i) + u_i].$

- Thus, the population regression model written in terms of X
 _i has an error that contains (X_i X
 _i). If (X_i X
 _i) is correlated with X
 _i then β
 ₁ will be inconsistent.
- In general, the size and direction of the bias depend on the correlation of \tilde{X}_i and $(X_i \tilde{X}_i)$ and this correlation depends, in turn, on the specific nature of the measurement error.

Measurement error: example (classical measurement error)

- For example, suppose that X
 _i = X_i + w_i, where the measurement error w_i is purely random (i.e., independent of u_i and X_i) with mean zero and variance σ²_w.
- Even in this "ideal" case, some algebra (show this!) shows that

$$\hat{\beta}_1 \xrightarrow{p} \frac{\sigma_X^2}{\sigma_X^2 + \sigma_w^2} \beta_1$$

- Because $\frac{\sigma_X^2}{\sigma_X^2 + \sigma_w^2} \le 1$, $\hat{\beta}_1$ will be biased towards 0.
- Extreme case 1: if measurement error is so large that no information about X_i remains, i.e., $\sigma_w^2 \to \infty$, then $\hat{\beta}_1 \xrightarrow{p} 0$
- Extreme case 2: if there is no measurement error, i.e., $\sigma_w^2 = 0$, then $\hat{\beta}_1 \xrightarrow{p} \beta_1$

Simultaneity: theory

- So far, we have assumed that causality runs from X_i to Y_i . But what if causality also runs from Y_i to X_i ?
- If so, causality runs backwards as well as forward, that is, there is simultaneous causality. This will again lead to inconsistency of OLS.
- Consider a simple setup with two variables X_i and Y_i. Accordingly, there are two equations

$$Y_i = \beta_0 + \beta_1 X_i + u_i \tag{4}$$

$$X_i = \gamma_0 + \gamma_1 Y_i + v_i \tag{5}$$

Simultaneity leads to correlation between X_i and the error term u_i in (4).

To see this, imagine that u_i is negative, which decreases Y_i. However, this lower value of Y_i affects the value of X_i through equation (5), and if γ₁ is positive, a low value of Y_i will lead to a low value of X_i. Thus, if γ₁ is positive, X_i and u_i will be positively correlated.

Let us revisit the police spending and crime example from the previous set of slides. In this case

$$crime_i = \beta_0 + \beta_1 spending_i + u_i$$

 $spending_i = \gamma_0 + \gamma_1 crime_i + v_i$

where we would expect $\beta_1 < 0$ and $\gamma_1 > 0$.

- Sample selection occurs when the availability of the data is influenced by a selection process that is related to the value of the dependent variable.
- This selection process can introduce correlation between X_i and u_i .
- Sample selection generally leads to inconsistency of the OLS estimator.

Sample selection bias: example (wage regression)

- A sample selection problem occurs because only individuals who have jobs have wages (by definition).
- The factors that determine whether someone has a job are similar to the factors that determine how much that person earns when employed.
- Thus, the fact that someone has a job suggests that, all else equal, u_i for that person is positive.
- As a consequence, the simple fact that someone has a job, and thus appears in the data set, provides information that u_i is positive, at least on average, and could be correlated with regressors.