Agile

Manifesto

Our highest priority is to satisfy the customer through early and continuous delivery of valuable
software.

Welcome changing requirements, even late in development. Agile processes harness change for
the customer's competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of months, with a
preference to the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and support they need,
and trust them to get the job done.

The most efficient and effective method of conveying information to and within a development
team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and users should
be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity--the art of maximizing the amount of work not done--is essential.

The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more effective, then tunes and adjusts
its behavior accordingly.

Manifesto (Key Points)
Customer Satisfaction
Continuous Delivery

Value

Welcome Change

Business + Developer collaboration
Motivated Individuals

Trust

Tools

Face-to-face communication
Sustainable Pace

Technical Excellence

Design Agility

Simplicity

“Work Not Done”
Self-Organization

Reflection

Scrum

Operate in sprints — deliver something by sprint end

Small Teams
Standups
Deal with “requirements volatility” and unexpected challenges
Deliver Quickly
Iterate
Respond to emerging requirements and adapt to new technologies and market conditions
Very “spiral model”-like
Cross Functional — business plus developers
o Product Owner
= Represents the Stakeholders and acts as their proxy
= “Voice of the Customer”
= Generate user stories
= Groom the backlog (but not estimate!)
= Prioritization
= Empathetic to all groups and facilitate communication
o Development Team
= Not just pure developers — analysts/designers, too
= Create “Potentially Shippable Increments”
o Scrum Master
= Sort of the team lead
= Minimize distractions for the team
= Ensure the team follows scrum principles and methodology
= Often practices servant leadership
Workflow
o Sprint Planning
o Standups/Doing the work
o Retrospective
o Backlog refinement
Backlog
o Story Points
o User stories/use cases/items
Product Increment
o “Build”
Burning down
Definition of Done
Velocity
Limitations
o Time shifted teams
Geographically separated teams
Skills sets (too focused)
Products with External Dependencies
Legacy code

O O O O

Kanban

e Pullin work as necessary
e Limit amount in progress to focus
e Good for legacy/fire-fighting/maintenance work

Extreme Programming (XP)

e Pair Programming
e Emphasis on testability (unit-, acceptance-)
e “Code for today”

Jira (Live Demo)

e Scrum

e Backlog

e Estimation

e Sprint

e Sprint Planning
e Standups

e Burndown
e Retrospective

