
Agile Manifesto
• Our highest priority is to satisfy the customer through early and continuous delivery of valuable

software.

• Welcome changing requirements, even late in development. Agile processes harness change for

the customer's competitive advantage.

• Deliver working software frequently, from a couple of weeks to a couple of months, with a

preference to the shorter timescale.

• Business people and developers must work together daily throughout the project.

• Build projects around motivated individuals. Give them the environment and support they need,

and trust them to get the job done.

• The most efficient and effective method of conveying information to and within a development

team is face-to-face conversation.

• Working software is the primary measure of progress.

• Agile processes promote sustainable development. The sponsors, developers, and users should

be able to maintain a constant pace indefinitely.

• Continuous attention to technical excellence and good design enhances agility.

• Simplicity--the art of maximizing the amount of work not done--is essential.

• The best architectures, requirements, and designs emerge from self-organizing teams.

• At regular intervals, the team reflects on how to become more effective, then tunes and adjusts

its behavior accordingly.

Agile Manifesto (Key Points)
• Customer Satisfaction

• Continuous Delivery

• Value

• Welcome Change

• Business + Developer collaboration

• Motivated Individuals

• Trust

• Tools

• Face-to-face communication

• Sustainable Pace

• Technical Excellence

• Design Agility

• Simplicity

• “Work Not Done”

• Self-Organization

• Reflection

Scrum
• Operate in sprints – deliver something by sprint end

• Small Teams

• Standups

• Deal with “requirements volatility” and unexpected challenges

• Deliver Quickly

• Iterate

• Respond to emerging requirements and adapt to new technologies and market conditions

• Very “spiral model”-like

• Cross Functional – business plus developers

o Product Owner

▪ Represents the Stakeholders and acts as their proxy

▪ “Voice of the Customer”

▪ Generate user stories

▪ Groom the backlog (but not estimate!)

▪ Prioritization

▪ Empathetic to all groups and facilitate communication

o Development Team

▪ Not just pure developers – analysts/designers, too

▪ Create “Potentially Shippable Increments”

o Scrum Master

▪ Sort of the team lead

▪ Minimize distractions for the team

▪ Ensure the team follows scrum principles and methodology

▪ Often practices servant leadership

• Workflow

o Sprint Planning

o Standups/Doing the work

o Retrospective

o Backlog refinement

• Backlog

o Story Points

o User stories/use cases/items

• Product Increment

o “Build”

• Burning down

• Definition of Done

• Velocity

• Limitations

o Time shifted teams

o Geographically separated teams

o Skills sets (too focused)

o Products with External Dependencies

o Legacy code

Kanban
• Pull in work as necessary

• Limit amount in progress to focus

• Good for legacy/fire-fighting/maintenance work

Extreme Programming (XP)
• Pair Programming

• Emphasis on testability (unit-, acceptance-)

• “Code for today”

Jira (Live Demo)
• Scrum

• Backlog

• Estimation

• Sprint

• Sprint Planning

• Standups

• Burndown

• Retrospective

