
 CHAPTER 9 DESIGNING DATABASES 315

HIGHEST-VOLUME CUSTOMER

ENTER PRODUCT ID.: M128

START DATE: 11/01/2017

END DATE: 12/31/2017

– –

CUSTOMER ID.: 1256

NAME: Commonwealth Builder

VOLUME: 30

This inquiry screen shows the customer with the largest volume of total sales for a specified product during

an indicated time period.

Relations:

 CUSTOMER(Customer_ID,Name)

 ORDER(Order_Number,Customer_ID,Order_Date)

 PRODUCT(Product_ID)

 LINE ITEM(Order_Number,Product_ID,Order_Quantity)

- - - - - - - - -

(a) FIGURE 9-3
Simple example of logical data modeling
(a) Highest-volume customer query screen

CUSTOMER(Customer_ID,Name)

PRODUCT(Product_ID)

INVOICE(Invoice_Number,Invoice_Date,Order_Number)

ORDER(Order_Number,Customer_ID,Order_Date)

LINE ITEM(Order_Number,Product_ID,Order_Quantity)

SHIPMENT(Product_ID,Invoice_Number,Ship_Quantity)

_ _ _ _ _ _ _

_ _ _ _ _ _ _ _

(c) (c) Integrated set of relations

BACKLOG SUMMARY REPORT

11/30/2017

PAGE 1

BACKLOG

QUANTITYPRODUCT ID

B381

B975

B985

E125

M128

0

0

6

30

2

…
…

This report shows the unit volume of each product that has been ordered less that amount shipped

through the specified date.

Relations:

 PRODUCT(Product_ID)

 LINE ITEM(Product_ID,Order_Number,Order_Quantity)

 ORDER(Order_Number,Order_Date)

 SHIPMENT(Product_ID,Invoice_Number,Ship_Quantity)

 INVOICE(Invoice_Number,Invoice_Date,Order_Number)

(b) (b) Backlog summary report

316 PART IV DESIGN

The Invoice Number field is required because it is part of the primary key for
the SHIPMENT table (the value that makes every row of the SHIPMENT table
unique is a combination of Invoice Number and Product ID).
An index is defined for the Invoice Number field, but because there may be sev-
eral rows in the SHIPMENT table for the same invoice (different products on the
same invoice), duplicate index values are allowed (so Invoice Number is what we
will call a secondary key).

Places

Bills

 LINE ITEM

Order_Quantity

 SHIPMENT

Ship_Quantity

 CUSTOMER

Customer_ID

Name

Address

 ORDER

Order_Number

Order_Date

 INVOICE

Invoice_Number

 PRODUCT

Product_ID

Description

Relations:

 CUSTOMER(Customer_ID,Name,Address)

 PRODUCT(Product_ID,Description)

 ORDER(Order_Number,Customer_ID,Order_Date)

 LINE ITEM(Order_Number,Product_ID,Order_Quantity)

 INVOICE(Invoice_Number,Order_Number)

 SHIPMENT(Invoice_Number,Product_ID,Ship_Quantity)
- - - - - - - - - -

- - - - - - - - -

(d)FIGURE 9-3 (continued)
(d) Conceptual data model and
transformed relations

CUSTOMER(Customer_ID,Name,Address)

PRODUCT(Product_ID,Description)

ORDER(Order_Number,Customer_ID,Order_Date)

LINE ITEM(Order_Number,Product_ID,Order_Quantity)

INVOICE(Invoice_Number,Order_Number,Invoice_Date)

SHIPMENT(Invoice_Number,Product_ID,Ship_Quantity)

_ _ _ _ _ _ _

_ _ _ _ _ _ _ _

(e)(e) Final set of normalized relations

FIGURE 9-4
Definition of shipment table in
Microsoft Access

(Source: Microsoft Corporation.)

 CHAPTER 9 DESIGNING DATABASES 317

Many other physical database design decisions were made for the SHIPMENT
table, but they are not apparent on the display in Figure 9-4. Further, this table is only
one table in the Pine Valley Furniture Company Order Entry database, and other
tables and structures for this database are not illustrated in this figure.

The Relational Database Model

Many different database models are in use and are the bases for database technolo-
gies. Although hierarchical and network models have been popular in the past, these
are not used very often today for new information systems. Object-oriented data-
base models are emerging but are still not common. The vast majority of informa-
tion systems today use the relational database model. The relational database model
(Codd, 1970; Date, 2012; Elmasri and Navathe, 2015; Umanath and Scamell, 2014)
represents data in the form of related tables, or relations. A relation is a named, two-
dimensional table of data. Each relation (or table) consists of a set of named columns
and an arbitrary number of unnamed rows. Each column in a relation corresponds
to an attribute of that relation. Each row of a relation corresponds to a record that
contains data values for an entity.

Figure 9-5 shows an example of a relation named EMPLOYEE1. This relation
contains the following attributes describing employees: Emp_ID, Name, Dept, and
Salary. This table has five sample rows, corresponding to five employees.

You can express the structure of a relation with a shorthand notation in which
the name of the relation is followed (in parentheses) by the names of the attributes
in the relation. The identifier attribute (called the primary key of the relation) is under-
lined. For example, you would express EMPLOYEE1 as follows:

EMPLOYEE1(Emp_ID,Name,Dept,Salary)

Not all tables are relations. Relations have several properties that distinguish them
from nonrelational tables:

1. Entries in cells are simple. An entry at the intersection of each row and column
has a single value.

2. Entries in a given column are from the same set of values.
3. Each row is unique. Uniqueness is guaranteed because the relation has a non-

empty primary key value.
4. The sequence of columns can be interchanged without changing the meaning or

use of the relation.
5. The rows may be interchanged or stored in any sequences.

Well-Structured Relations

What constitutes a well-structured relation (also known as a table)? Intuitively, a well-
structured relation contains a minimum amount of redundancy and allows users
to insert, modify, and delete the rows in a table without errors or inconsistencies.

Relational database model
Data represented as a set of related tables
or relations.

Relation
A named, two-dimensional table of data.
Each relation consists of a set of named
columns and an arbitrary number of
unnamed rows.

Well-structured relation
A relation that contains a minimum amount
of redundancy and that allows users to
insert, modify, and delete the rows without
error or inconsistencies; also known as
a table.

EMPLOYEE1

Emp_ID Name Dept Salary

100 Margaret Simpson Marketing 75,000

140 Allen Beeton Accounting 95,000

110 Chris Lucero Info Systems 90,000

190 Lorenzo Davis Finance 90,000

150 Susan Martin Marketing 62,000

FIGURE 9-5
EMPLOYEE1 relation with sample data

318 PART IV DESIGN

EMPLOYEE1 (Figure 9-5) is such a relation. Each row of the table contains data
describing one employee, and any modification to an employee’s data (such as a
change in salary) is confined to one row of the table.

In contrast, EMPLOYEE2 (Figure 9-6) contains data about employees and the
courses they have completed. Each row in this table is unique for the combination
of Emp_ID and Course, which becomes the primary key for the table. This is not a
well-structured relation, however. If you examine the sample data in the table, you
notice a considerable amount of redundancy. For example, the Emp_ID, Name,
Dept, and Salary values appear in two separate rows for employees 100, 110, and 150.
Consequently, if the salary for employee 100 changes, we must record this fact in two
rows (or more, for some employees).

The problem with this relation is that it contains data about two entities:
EMPLOYEE and COURSE. You will learn to use principles of normalization
to divide EMPLOYEE2 into two relations. One of the resulting relations is
EMPLOYEE1 (Figure 9-5). The other we will call EMP COURSE, which appears
with sample data in Figure 9-7. The primary key of this relation is the combination
of Emp_ID and Course (we emphasize this by underlining the column names for
these attributes).

NORMALIZATION

We have presented an intuitive discussion of well-structured relations; however, we
need rules and a process for designing them. Normalization is a process for con-
verting complex data structures into simple, stable data structures (Date, 2012).

Normalization
The process of converting complex data
structures into simple, stable data structures.

Emp_ID Name Dept Salary Course Date_Completed

100 Margaret Simpson Marketing 42,000 SPSS 6/19/2017

100 Margaret Simpson Marketing 42,000 Surveys 10/7/2017

140 Alan Beeton Accounting 39,000 Tax Acc 12/8/2017

110 Chris Lucero Info Systems 41,500 SPSS 1/22/2017

110 Chris Lucero Info Systems 41,500 C++ 4/22/2017

190 Lorenzo Davis Finance 38,000 Investments 5/7/2017

150 Susan Martin Marketing 38,500 SPSS 6/19/2017

150 Susan Martin Marketing 38,500 TQM 8/12/2017

EMPLOYEE2

FIGURE 9-6
Relation with redundancy

Date_

Emp_ID Course Completed

100 SPSS 6/19/2017

100 Surveys 10/7/2017

140 Tax Acc 12/8/2017

110 SPSS 1/22/2017

110 C++ 4/22/2017

190 Investments 5/7/2017

150 SPSS 6/19/2017

150 TQM 8/12/2017

EMP COURSE

FIGURE 9-7
EMP COURSE relation

 CHAPTER 9 DESIGNING DATABASES 319

For example, we used the principles of normalization to convert the EMPLOYEE2
table with its redundancy to EMPLOYEE1 (Figure 9-5) and EMP COURSE
(Figure 9-7).

Rules of Normalization

Normalization is based on well-accepted principles and rules. There are many nor-
malization rules, more than can be covered in this text (see Hoffer et al. [2011], for
a more complete coverage). Besides the five properties of relations outlined previ-
ously, there are two other frequently used rules:

1. Second normal form (2NF). Each nonprimary key attribute is identified by the
whole key (what we call full functional dependency). For example, in Figure 9-7,
both Emp_ID and Course identify a value of Date_Completed because the same
Emp_ID can be associated with more than one Date_Completed and the same
for Course.

2. Third normal form (3NF). Nonprimary key attributes do not depend on each other
(what we call no transitive dependencies). For example, in Figure 9-5, Name,
Dept, and Salary cannot be guaranteed to be unique for one another.

The result of normalization is that every nonprimary key attribute depends
upon the whole primary key and nothing but the primary key. We discuss second and
third normal form in more detail next.

Functional Dependence and Primary Keys

Normalization is based on the analysis of functional dependence. A functional
 dependency is a particular relationship between two attributes. In a given relation,
attribute B is functionally dependent on attribute A if, for every valid value of A, that
value of A uniquely determines the value of B (Date, 2012; Hoffer et al., 2016). The
functional dependence of B on A is represented by an arrow, as follows: A S B (e.g.,
Emp_ID S Name in the relation of Figure 9-5). Functional dependence does not
imply mathematical dependence—that the value of one attribute may be computed
from the value of another attribute; rather, functional dependence of B on A means
that there can be only one value of B for each value of A. Thus, a given Emp_ID value
can have only one Name value associated with it; the value of Name, however, can-
not be derived from the value of Emp_ID. Other examples of functional dependen-
cies from Figure 9-3b are in ORDER, Order_Number, Order_Date, and in INVOICE,
Invoice_Number, Invoice_Date, and Order_Number.

An attribute may be functionally dependent on two (or more) attributes
rather than on a single attribute. For example, consider the relation EMP COURSE
(Emp_ID,Course,Date_Completed) shown in Figure 9-7. We represent the functional
dependency in this relation as follows:

Emp_ID,Course S Date_Completed (this is sometimes shown as Emp_ID +
Course S Date_Completed). In this case, Date_Completed cannot be determined
by either Emp_ID or Course alone because Date_Completed is a characteristic of an
employee taking a course.

You should be aware that the instances (or sample data) in a relation do not
prove that a functional dependency exists. Only knowledge of the problem domain,
obtained from a thorough requirements analysis, is a reliable method for identifying
a functional dependency. However, you can use sample data to demonstrate that a
functional dependency does not exist between two or more attributes. For example,
consider the sample data in the relation EXAMPLE(A,B,C,D), shown in Figure 9-8.
The sample data in this relation prove that attribute B is not functionally dependent
on attribute A because A does not uniquely determine B (two rows with the same
value of A have different values of B).

Functional dependency
A constraint between two attributes
in which the value of one attribute is
determined by the value of another
attribute.

A B C D

X U

Y X

Z Y

Y Z

X Y

Z X

Y Y

W Z

EXAMPLE

FIGURE 9-8
EXAMPLE relation

320 PART IV DESIGN

Second Normal Form

A relation is in second normal form (2NF) if every nonprimary key attribute is func-
tionally dependent on the whole primary key. Thus, no nonprimary key attribute is
functionally dependent on part, but not all, of the primary key. Second normal form
is satisfied if any one of the following conditions apply:

1. The primary key consists of only one attribute (such as the attribute Emp_ID in
relation EMPLOYEE1).

2. No nonprimary key attributes exist in the relation.
3. Every nonprimary key attribute is functionally dependent on the full set of pri-

mary key attributes.

EMPLOYEE2 (Figure 9-6) is an example of a relation that is not in second nor-
mal form. The shorthand notation for this relation is

EMPLOYEE2(Emp_ID,Name,Dept,Salary,Course,Date_Completed)

The functional dependencies in this relation are the following:

Emp_ID S Name,Dept,Salary
Emp_ID,Course S Date_Completed

The primary key for this relation is the composite key Emp_ID,Course.
Therefore, the nonprimary key attributes Name, Dept, and Salary are functionally
dependent on only Emp_ID but not on Course. EMPLOYEE2 has redundancy, which
results in problems when the table is updated.

To convert a relation to second normal form, you decompose the relation into
new relations using the attributes, called determinants, that determine other attri-
butes; the determinants are the primary keys of these relations. EMPLOYEE2 is de-
composed into the following two relations:

1. EMPLOYEE(Emp_ID,Name,Dept,Salary): This relation satisfies the first second
normal form condition (sample data shown in Figure 9-5).

2. EMP COURSE(Emp_ID,Course,Date_Completed): This relation satisfies second
normal form condition three (sample data appear in Figure 9-7).

Third Normal Form

A relation is in third normal form (3NF) if it is in second normal form and there are
no functional dependencies between two (or more) nonprimary key attributes (a
functional dependency between nonprimary key attributes is also called a transitive
dependency). For example, consider the relation SALES (Customer_ID, Customer_
Name,Salesperson,Region) (sample data shown in Figure 9-9a).

The following functional dependencies exist in the SALES relation:

1. Customer_ID S Customer_Name,Salesperson,Region (Customer_ID is the
 primary key.)

2. Salesperson S Region (Each salesperson is assigned to a unique region.)

Notice that SALES is in second normal form because the primary key consists
of a single attribute (Customer_ID). However, Region is functionally dependent on
Salesperson, and Salesperson is functionally dependent on Customer_ID. As a result,
there are data maintenance problems in SALES.

1. A new salesperson (Robinson) assigned to the North region cannot be entered
until a customer has been assigned to that salesperson (because a value for
 Customer_ID must be provided to insert a row in the table).

Second normal form (2NF)
A relation is in second normal form if every
nonprimary key attribute is functionally
dependent on the whole primary key.

Third normal form (3NF)
A relation is in second normal form and
has no functional (transitive) dependencies
between two (or more) nonprimary key
attributes.

 CHAPTER 9 DESIGNING DATABASES 321

2. If customer number 6837 is deleted from the table, we lose the information that
salesperson Hernandez is assigned to the East region.

3. If salesperson Smith is reassigned to the East region, several rows must be
changed to reflect that fact (two rows are shown in Figure 9-9a).

These problems can be avoided by decomposing SALES into the two rela-
tions, based on the two determinants, shown in Figure 9-9b. These relations are the
following:

SALES1(Customer_ID,Customer_Name,Salesperson)
SPERSON(Salesperson,Region)

Note that Salesperson is the primary key in SPERSON. Salesperson is also a
foreign key in SALES1. A foreign key is an attribute that appears as a nonprimary key
attribute in one relation (such as SALES1) and as a primary key attribute (or part
of a primary key) in another relation. You designate a foreign key by using a dashed
underline.

A foreign key must satisfy referential integrity, which specifies that the value of
an attribute in one relation depends on the value of the same attribute in another
relation. Thus, in Figure 9-9b, the value of Salesperson in each row of table SALES1 is
limited only to the current values of Salesperson in the SPERSON table. If some sales
do not have to have a salesperson, then it is possible for the value of Salesperson to
be null (i.e., have no value). Referential integrity is one of the most important prin-
ciples of the relational model.

TRANSFORMING E-R DIAGRAMS INTO RELATIONS

Normalization produces a set of well-structured relations that contains all of the data
mentioned in system inputs and outputs developed in human interface design. Because
these specific information requirements may not represent all future information
needs, the E-R diagram you developed in conceptual data modeling is another source
of insight into possible data requirements for a new application system. To compare

Foreign key
An attribute that appears as a nonprimary
key attribute in one relation and as a
primary key attribute (or part of a primary
key) in another relation.

Referential integrity
A rule that states that either each foreign
key value must match a primary key value
in another relation or the foreign key value
must be null (i.e., have no value).

Salesperson Region

Smith South

Hicks

Hernandez East

Faulb

West

North

SPERSON

Customer_ID Customer_Name Salesperson

8023 Anderson Smith

9167 Bancroft Hicks

7924 Hobbs Smith

6837 Tucker Hernandez

8596 Eckersley Hicks

7018 Arnold Faulb

SALES1

Customer_ID Customer_Name Salesperson Region

8023 Anderson Smith South

9167 Bancroft Hicks West

7924 Hobbs Smith South

6837 Tucker Hernandez East

8596 Eckersley Hicks West

7018 Arnold Faulb North

SALES FIGURE 9-9
Removing transitive dependencies
(a) Relation with transitive dependency

(b) Relation in 3NF

322 PART IV DESIGN

the conceptual data model and the normalized relations developed so far, your
E-R diagram must be transformed into relational notation, normalized, and then
merged with the existing normalized relations.

Transforming an E-R diagram into normalized relations and then merging all
the relations into one final, consolidated set of relations can be accomplished in
four steps. These steps are summarized briefly here, and then steps 1, 2, and 4 are
discussed in detail in the remainder of this chapter.

1. Represent entities. Each entity type in the E-R diagram becomes a relation. The
identifier of the entity type becomes the primary key of the relation, and other
attributes of the entity type become nonprimary key attributes of the relation.

2. Represent relationships. Each relationship in an E-R diagram must be represented
in the relational database design. How we represent a relationship depends on
its nature. For example, in some cases we represent a relationship by making the
primary key of one relation a foreign key of another relation. In other cases, we
create a separate relation to represent a relationship.

3. Normalize the relations. The relations created in steps 1 and 2 may have unnec-
essary redundancy. So we need to normalize these relations to make them well
structured.

4. Merge the relations. So far in database design we have created various relations
from both a bottom-up normalization of user views and from transforming one or
more E-R diagrams into sets of relations. Across these di"erent sets of relations,
there may be redundant relations (two or more relations that describe the same
entity type) that must be merged and renormalized to remove the redundancy.

Represent Entities

Each regular entity type in an E-R diagram is transformed into a relation. The
identifier of the entity type becomes the primary key of the corresponding rela-
tion. Each nonkey attribute of the entity type becomes a nonkey attribute of the
relation. You should check to make sure that the primary key satisfies the following
two properties:

1. The value of the key must uniquely identify every row in the relation.
2. The key should be nonredundant; that is, no attribute in the key can be deleted

without destroying its unique identification.

Some entities may have keys that include the primary keys of other entities. For
example, an EMPLOYEE DEPENDENT may have a Name for each dependent, but
to form the primary key for this entity, you must include the Employee_ID attribute
from the associated EMPLOYEE entity. Such an entity whose primary key depends
upon the primary key of another entity is called a weak entity.

Representation of an entity as a relation is straightforward. Figure 9-10a shows
the CUSTOMER entity type for PVF. The corresponding CUSTOMER relation is rep-
resented as follows:

CUSTOMER(Customer_ID,Name,Address,City_State_ZIP,Discount)

In this notation, the entity type label is translated into a relation name. The
identifier of the entity type is listed first and underlined. All nonkey attributes are
listed after the primary key. This relation is shown as a table with sample data in
Figure 9-10b.

Represent Relationships

The procedure for representing relationships depends on both the degree of the
relationship—unary, binary, ternary—and the cardinalities of the relationship.

